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ABSTRACT

This report presents methods for computing the properties of the reflection
from a cube-corner array when it is illuminated by a laser pulse. Such information
is useful in the design of satellite retroreflector arrays and ground tracking equip-
ment as well as in the analysis of the data obtained. The methods derived include
the effects of coherent interference, diffraction, polarization, and dihedral-angle
offsets. Considerable space is devoted to deriving expressions for the diffraction
pattern and active reflecting area of various types of retroreflectors.
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METHOD OF CALCULATING RETROREFLECTOR-ARRAY
TRANSFER FUNCTIONS

David A. Arnold

1. INTRODUCTION

The work described in this report was begun as part of the Lageos study program
(formerly called Cannonball) supported by grant NGR 09-015-164 from the National
Aeronautics and Space Administration (NASA). The laser ranging accuracies pro-
posed for the Lageos satellite required the development of a transfer function to
relate the observed return pulses to the center of mass of the satellite. Preliminary
transfer-iunction analyses done for the Lageos retroreflector array are presented
in Weiffenbach (1973). The development of the techniques and computer programs
has been continued under NASA grants NGR 09-015-196 and NGR 09-015-002. Trans-
fer functions computed for most of the retroreflector-equipped satellites now in orbit
have been published (Arnold, 1972, 1974, 1975a,b, 1978). This report documents the
techniques and equations used in calculating the transfer functions presented in those
references. Transfer-function analyses have also been done for some of the retro-
reflector satellites at Goddard Space Flight Center (Felsentreger, 1972; Fitzmaurice,
1977; Minott, 1972, 1974a,b; 1976, 1978; Plotkin, 1964; Regardie, 1976). Since the
optical properties of the cube corners are of primary importance, a large part of this
report is devoted to reviewing the basic properties of cube corners, deriving analytical
expressions for the active reflecting area of various cube-corner designs, and develop-
ing methods for computing the diffraction pattern of these retroreflectors. The diffrac-
tion calculation for a circular reflector employs numerical integration over one of the

variables in the surface integral.

This work was supported in part by grants NGR 09-015-164, NGR 09-015-196, and
NGR 09-015-002 from the National Aeronautics and Space Administration.
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Expressions for the incoherent and coherent returns from an array are pre-
sented. The phases of the reflections from individual cube corners are chosen by
use of a pseudo random-number generator. Statistics on the variation of the proper-
ties of the return pulse due to coherent interference are derived by computing many
coherent returns. '

The last section outlines the method of computing the position and orientation of

each cube corner in an array in which design data are used.

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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2. BASIC RETROREFLECTOR PROPERTIES

2.1 Retroreflection

A retroreflector consists of three mutually perpendicular reflecting surfaces.
Let the reflecting surfaces be the xy, yz, and zx planes (Figure 1). A light ray inci-
dent on one of the surfaces, such as the xy plane, has the component of the velocity
vector normal to that plane, the z component, reversed. After reflection from the
three surfaces, all components of the velocity vector are reversed and the ray has

been retroreflected.

Figure 1. Basic retroreflector.

2.2 Angle of Incidence on Back Faces

Each of the three orthogonal reflecting surfaces in a cube corner reverses the
component of the light's velocity vector normal to that surface. Since the magnitude
of the velocity vector is not changed by any of the reflections, it follows that the angle
of incidence of the beam with a particular face must be a constant independent of the
order in which the reflections occur. Therefore, the angle of incidence on a given
face is equal to the angle the incident beam makes with each face. This property is
particularly useful when determining the cutoff angles for total internal reflection in

uncoated cube corners.

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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2.3 Symmetry of Incident and Reflected Rays

The vertex of a retroreflector is halfway between the lines defined by the incident
and the reflected rays. In a two-dimensional retroreflector (Figure 2), OC is con-
structed through the vertex parallel to the incident ray AB and the reflected ray DE.

By the law of reflection, a;=a, and (31 = By, and by construction, a;=ag and B, = 53.
Therefore, BC = OC and OC = CD because the triangles are isosceles. Since BC = CD,
the line OC is halfway between the incident and the reflected rays. The same diagram
is equally valid in three dimensions since the third reflection reverses the component
of the velocity perpendicular to the paper and does not alter the angle of the lines in this
perspective. The above proof is the same for any pair of axes; thus, the line OC must
be in the same plane as AB and DE and halfwé.y between them.

E
B
a,
Sie LY
D

Figure 2. Two-dimensional retroreflector.

2.4 Equal Path Length for All Rays

The distance traveled by all rays is the same as the distance traveled by the ray
that goes to the vertex. In Figure 3, BG is constructed parallel to CE, so
CB=DH=EG. Also, CD= OD= DE, as shown previously. Therefore, the path
B-C—E—G is equal to the distance HO + OH.

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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Figure 3. Path length for a two-dimensional retroreflector.

AT is constructed perpendicular to the incident and reflected rays and is a phase
front. Since AB= —FT@, the path A—-C—E~F equals B—C—E—G. The equalities above
also hold for the horizontal and vertical components of all the line segments. Since
this is true for any pair of axes, the three-dimensional distance traveled by all rays
from the phase front is the same. This proof works for either a hollow reflector or

a solid one whose face is perpendicular to the light beam.

If the reflector is made of a dielectric whose face is flat, the optical path length
for all rays is also constant. In Figure 4, BF | Ol and AG | TH. As shown before,
the path B-C—E—F equals the distance JO + OJ. Since FG is twice J1, the path
B-C-E—G equals 10 + OI. Outside the dielectric, AB is twice HI, so AB = HI + IH.
These relations hold for both the horizontal and the vertical components of the dis-
tances. Since a similar proof exists for any pair of axes, the three-dimensional
optical path length for all rays is the same as the optical path length of the ray that
travels to the vertex. If the front surface and the back reflecting faces are not
optically flat, or if the angles between the reflecting faces are not exactly 90°, the
optical path length will be different for different rays.

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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Figure 4. Solid two-dimensional retroreflector.

2.5 Range Correction for Optical Path Length-

The range measured by timing a laser pulse reflected from a hollow cube corner
is the range to the vertex of the reflector. If the retroreflector consists of a dielectric,
such as fused quartz, then it is necessary to correct for the slower velocity of the light
beam in the dielectric. The optical path length is n times the geometrical path length,
where n is the index of refraction. If the length of the retroreflector from the vertex
to the center of the front face is L, the optical path length in the cube corner at nor-
mal incidence is nL. The difference between the optical and the geometrical path length
isnL - L= L@ - 1). The range measured to a solid cube corner at normal incidence
is greater than the range measured to a hollow cube corner by L(n - 1). The range
correction will vary with the incidence angle of the beam on the front face of the cube
corner. It is a little simpler to calculate the correction from the center of the front
face of the reflector than from the vertex.

The correction factor AR is the difference between the optical path length nOB
and the distance AC (see Figure 5); that is,

AR =nOB -AC . (2-1)

The length of the reflector is L= OA. The incidence angle is i and the refracted
angle is r. From Figure 5, we see that
L

OB=—— . (2-2)

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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Figure 5. Optical path length in a retroreflector.

Using Snell's law,

sin i
- =n ,
sin r

we get
. sin i
s1nr='n— 5

from which we can write

cos r= ‘/l - sin2 T
2

sin” i
1 -

2
n
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Substituting this into equation (2-2) yields

OB = —
cos T

- nL | 2-3)

V2 - sin? i

From Figure 5,

C=ABsini
= Ltanr sini

sihr . .
=L —=sini
cosrS

L sini/n

) (1/n) Vn2 - sin? i

sin i

2.
_Lsin i . 2-4)
n? - sin? i

Substituting equations (2-3) and (2-4) into equation (2-1), we get
AR = nOB - AC

n2L _ L sin2 i

Vn2 - sin2 i n2 - sin? i

= L (n2 - si.n2 i)

Vn2 - sin? i

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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The correction with respect to the vertex can be expressed as follows:

AR’= AR - L cos i

LVnz—sin i-Lecosi

2
= L<Vn2 - sinzi—cos i> .

2.6 Input and Output Apertures

As shown in Section 2.3, the retroreflected ray leaves along a line on the opposite
side of the vertex from the incident ray. Figure 6a shows the retroreflector from the
direction of the incident beam; a ray incident at point A will be retroreflected from
point B, which is an equal distance on the other side of the vertex O. Similarly, point
C moves to point D. For any shaped retroreflector face, the shape of the retroreflected
beam can be constructed by moving each point on the outline of the face an equal dis-
tance on the other side of the vertex. Figure 6b shows the result for a triangular
retroreflector at normal incidence. The solid line, the shape of the retroreflector
face, is called the input aperture, and the dotted line, giving the outline of the retro-
reflected beam, is the output aperture. The overlap of the two figures is the active
reflecting area. Any ray that is incident outside the overlap region will not be retro-
reflected, since the symmetry of the incident and the reflected rays would require
that the last reflection occur at a point outside the cube corner.

Figure 6. a) Method of constructing the output aperture; b) triangular input and out-
put apertures.

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System
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When the incident beam is not at normal incidence, the vertex as viewed from
the direction of the beam is not in the center of the aperture. When the output aper-
ture is constructed, it is also off center, so the intersection of the two figures giving
the active reflecting area is decreased. Figure 7 depicts this effect for a square

aperture. At normal incidence, the apertures coincide, while at an oblique angle of

] i |
| |
0 l o o :
| I
| |
. ' —J
NORMAL INCIDENCE OBLIQUE INCIDENCE

Figure 7. Displacement of the input and output apertures in the plane of the front
face.

incidence, the centers of the input and the output apertures are separated by some
distance OO’. The separation of the apertures can be calculated from the incidence
angle, as shown in Figure 8. The ray A incident on the center of the input aperture
is retroreflected as ray A’. The distance D between the points of intersection of A
and A’ with the front face is

D=2Ltan¢’ ,

where ¢' is the angle between the rays and the symmetry axis of the cube corner. The
separation is given in the plane of the front face of the retroreflector. As viewed from
the angle ¢', this distance is D cos ¢'. If the cube corner consists of a solid dielectric,
then the separation as viewed from the incidence angle ¢ is D cos ¢. The angles ¢ and ¢'
are related by Snell's law,

sin

smq)':n :

Similarily, the intersection of the input and output apertures as computed in the plane
of the front face will be smaller by the factor cos 4 when viewed from the direction of

the incident beam.

10
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Figure 8. Separation of input and output apertures.

In general, the direction of the incident beam is given by the two angles 6 and ¢,
where ¢ is measured from the normal to the front face and 6 is the azimuth angle
around the normal. The input and output apertures separate along the line given by

the projection of the incident beam onto the front face (see Figure 9).

rT———71 -~
| PE
| o' A1 8
| =7

1
| o T
| |
L |—

Figure 9. Direction of separation of the input and output apertures.

In summary, the active reflecting area for a retroreflector when illuminated by
. a beam whose direction is given by the angles 6 and ¢ is the intersection of the input
and output apertures in the plane of the front face multiplied by cos ¢. The separation
of the apertures is along the plane of incidence, the separation being 2L tan ¢’ in the
plane of the front face.

11
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2.7 Tube Analogy

Instead of thinking of both the input and the output apertures as being in the plane
of the front face of the retroreflector, we can visualize the active reflecting area by
considering the apertures as the openings at either end of a tube. In fact, when
looking into a retroreflector, it appears as though the output aperture is an equal
distance in back of the vertex from the input aperture. In this representation, the
output aperture is constructed by taking each point on the input aperture and moving
it an equal distance on the opposite side of the actual position of the vertex, as shown
in Figure 10. This technique is similar to the model of cube-corner phenomena given
in Eckhardt (1971).

IMAGE OF
FRONT FACE OUTPUT APERTURE

N/ VERTEX

S S SO OEESNREESSSSNNNNONANNN
SO SSINEKEISIEIESSSSAANAANANAN

FRONT FACE INPUT APERTURE

Figure 10. Tube analogy for input and output apertures.

The space seen by looking through the tube from various angles is the active
reflecting area for that incidence angle. The analogy holds for a solid cube corner
by filling the tube with a dielectric (Figure 11). The active reflecting area for a
solid reflector is larger than that of a hollow one at off-normal incidence because the

rays are bent into the cube corner.

12
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OUTPUT APERTURE

TS SSSOSSSESIENESSNSESS NN

S S SOSSSKASSSSSSESSOODDADAN

INPUT APERTURE

ACTIVE
REFLECTING AREA

Figure 11. Solid-cube-corner tube analogy.

2.8 Masking and Recession

By means of a variety of techniques, the active reflecting area of a cube corner
can be made to decrease more rapidly as the incidence angle departs from the normal
to the front face. The tube analogy is perhaps the best way to visualize the effect of
these techniques. If the cube corner is made narrower while keeping the length from
vertex to face constant, the reflecting area is decreased directly at normal incidence
and the cutoff angle (the angle beyond which there is no retroreflected signal) is
smaller as measured from normal incidence. The same effect could be achieved by
masking the front face by the same amount. Figure 12 shows both techniques.

If a hollow reflector is recessed in a cavity of the same shape as the face, the
effect is the same as changing the width-to-length ratio, as was done in the two pre-
vious techniques. If a solid cube corner is recessed, the effect is somewhat more
complicated. The wall of the container shadows the face of the reflector at an oblique

incidence angle. Since refraction occurs at the dielectric boundary, the displacement

13
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D of the input and output apertures is the sum of two terms. As shown in Figure 13,

D is given by
D= 2[R tan¢ + L tan ¢’) ,

where R is the amount of recession, and ¢ and ¢’ are the angles of the beam before and

after refraction, respectively.

\ \ \

SO SSEEEEEESESSESESsS1)
TS ISSSSSSSSISSN
I W W W W YO . . . . . O . %

S.S S S S SSSSSSSASANANY

W W W W W W, W . W, W W, W . W W W

_——
—1

A \

NORMAL MASKED NARROW

Figure 12. Effect of reducing the width-to-length ratio.

a) b)

| ¢’ I
| \jR
| :

$ $

Figure 13. Recessed solid cube corner.
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2.9 Multiple Apertures

The technique of masking can be used to produce pairs of apertures on a retro-
reflector. If half the aperture of a cube corner is covered (Figure 14), there will be

Figure 14. Half-covered retroreflector.

no effective reflecting area. Rays entering the open left half of the retroreflector must
exit on the right side by the principle of the symmetry of the incident and reflected

rays about the vertex. If holes are made in the mask on the right side of the aperture,
rays entering the holes will exit from the open left half and those entering the left half
exactly opposite the holes will exit from the holes. Thus, pai‘rs of apertures can be
produced, as shown in Figure 15. Figure 15 has the mask covering slightly more than
half the aperture, in order that a line will not be opened up in the center if the cube cor-
ner is slightly misaligned. The problem of alignment is also the reason for not having
matching holes in a mask that covers the entire aperture. Corresponding apertures
would not be exactly opposite each other except at normal incidence.

Figure 15. Pairs of apertures.

15
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2.10 Multiple Retroreflection

In a solid cube corner, a partial reflection occurs at the front face both as the
light enters the cube corner and as it leaves. The light reflected on entrance is not
in the retroreflection direction except at normal incidence. The light reflected back
into the cube corner as the beam is léaving can give rise to multiply retroreflected
beams. The contribution of these multiple retroreflections is negligible, largely
because the reflection coefficient is small. Except at normal incidence, the active
reflecting area decreases for each successive reflection, and only every other beam

leaving the cube corner is in the correct direction.

At normal incidence, the reflection coefficient is

R = n-l2
n+1l °

Forn= 1.46, R = 0.035. The path of multiply retroreflected rays according to the

tube analogy is drawn in Figure 16.

VA

@)
ol

E

- - -
J/ F/ B

Figure 16. Multiple retroreflection.

Hl

/ AL A A A A A RLRALRARRRY

Figure 17 shows the widths and positions of the various input and output apertures
and active reflecting areas for a square cube corner.

16
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le—>| THIRD ACTIVE REFLECTING AREA AND FOURTH INPUT APERTURE
le—}—>| THIRD OUTPUT APERTURE
| le—t———>| FIRST ACTIVE REFLECTIVE AREA AND SECOND INPUT APERTURE

N bt »| FIRST OUTPUT APERTURE
| |

N ——=|FIRST INPUT APERTURE

le———=| seconp outpuT APERTURE

SECOND ACTIVE REFLECTING AREA AND THIRD INPUT APERTURE

Figure 17. Widths of successive apertures for multiple retroreflection.

Let T be the transmission coefficient given by 1 - R and let Wo be the intensity
of the incident beam A. Table 1 gives the width of each beam for a square retroreflec-
tor with sides of unit length and incidence angle such that 2L cos ¢ = 0.25. The inten-
sities of each beam are calculated for R = 0.035 and T = 0. 965.

Table 1. Intensity and width of successive reflections within a cube corner.

Intensity

Beam Width Analytical Numerical
A Indefinite Wo Wo
B 1 RWo 0.035Wo
C 1 TWo 0.965Wo
D 0.75 T*Wo 0.931Wo
F 0.75 RTWo 0.0338Wo
F 0. 50 RT?Wo 0.0326Wo
G 0. 50 R®TWo 0.00118Wo
H 0.25 R%T%Wo 0.00114Wo
T 0.25 R3TWo 0.00004Wo
7 0.00 R3T?Wo 0.00004Wo

17
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In the above case, only beams D and H are in the retroreflection direction, and
the intensity of each successive retroreflected beam is decreased by R2 = 0.001225.
The separation of the input and output apertures increases by 4L tan ¢’ between each
successive retroreflection. The cutoff angle occurs when the width of the front face
is less than 2L tan ¢’ for the first retroreflection and when it is less than 6L tan ¢’

for the second.

2. 11 Dihedral-Angle Offsets

In a perfect retroreflector, the angle between any pair of reflecting faces is
exactly 90° and the reflected beam is exactly antiparallel to the incident beam. If
the dihedral angles differ from 90° by a small amount, the reflected beam will be
split into two, four, or six beams, depending on whether one, two, or three dihedral
angles are changed. Each spot corresponds to a particular order of reflection.
There are 3! = 6 possible orders of reflection. The orientation of each face is given
by the unit normals ﬁl’ ﬁz, and 33 to each face. The reflection from each face
reverses that component of the light's velocity vector that is normal to the face. Let
V and V’ be the directions of a ray before and after reflection, respectively, with
the vector V’ given by

where ﬁ is the normal to the face. Application of the above formula three times
yields the direction of the reflected beam for a particular order of reflection. For-
mulas for the direction of the reflected rays after the three reflections are given in
Yoder (1958), Chandler (1960), and Rityn (1967). Chandler's formula is

o s 2 AN N

t=q+ 29X (aa-pb+yc) , (2-5)
where -t is the final direction; q is the original direction; a, B, and y are the small
angles by which the angles between the three mirrors exceed right angles; and 3, '5,
and ¢ are the normals to the three mirrors taken in order in a right-hand sense.

Equation (2-5) is valid to first order when the mirrors are nearly mutually perpen-

dicular. The angle a is the angle between the faces whose normals are b and -5, etc.
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The normals may be strictly perpendicular; that is, they do not need to include the
small deviations caused by the dihedral-angle offsets.

In the transfer functions given in Weiffenbach (1973) and Arnold (1972, 1974,
1975a,b), the directions of the reflected rays were computed by applying the law of
reflection three times. The small deviations in the normals must be included to use
this technique.

The unit normals to the faces can be computed as follows (see Figure 18). Let
the normals to the faces without dihedral-angle offsets be the unit vectors /f, /f, and
ﬁ along the three coordinate axes x, y, and z, respectively. If the angle between the
xz plane and the yz plane is (7/2) + 6, this can be expressed by

A SR
nl—1+23 s
A A OA
n=iegl o,
A A
n3=k

For small angles &, the above expressions are quite adequate. Offsets in the other
two dihedral angles can be similarly represented. The normals should be divided by

their absolute magnitudes to ensure that they are strictly unit vectors.

872

(r/2)-8
8/2

Figure 18. Normals to the reflecting faces with dihedral-angle offsets.
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It is desirable to have the unit normals given in the coordinate system of the
symmetry axis of the corner cube since the incidence angle of the laser beam is given
with respect to this axis. The symmetry axis is in the direction of the vector

x=y=z= 1, as shown in Figure 19, and is given by the angles OA and )\A. From

Figure 19. Direction of symmetry axis.

Figure 19, we see that
cos 6, = 1V2 ,
sing, = 1V2
cos \y =VZAB
sin), = 143 .

The normals in the xyz coordinate system can be given in the coordinate system of

the symmetry axis by rotating the original coordinate system about the z axis by 6 A

and about the y axis by -)\A. This brings the x axis along the axis of the cube. In

matrix form, the total rotation is given by
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, . .

b:¢ cos)\AO sm)\A cos eA smeA 0 X

y’ = 0o 1 o0 -sineA cos6, 0|y .
7 —ai

Z s1n)\A0 cos)\A 0 0 1 Z

Substituting the values of the sines and cosines and multiplying the matrices, we get

x’=-1—(x+y+z)
75 ‘

’=_l__( - X)

y \/-2—3’ ’

z’=—l—(2z—x—y)
3

In Figure 20, the unprimed axes represent the original coordinate system, and the
primed axes are the rotated coordinates.

Figure 20. Relationship of X, y, z and X", y’, 2z’ coordinate axes.

The incident laser beam after refraction at the front face is in a direction given
by the angles 6’ and ¢’ in the primed coordinate system (see Figure 21).

21

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

Figure 21. Direction of incident beam after refraction.

A second rotation of the coordinate system must be performed to get the normals
to the faces in the coordinate system of the laser beam. By rotating the coordinate
system about the x’ axis by 6’ and then about the new z’ axis by ¢’, we get

x” cos ¢’ sin¢” 0\ /1 0 0 x’
y” ]=|-sin ¢’ cosd” 0 ]| 0 cos 6’ sin®’ || y’
z” 0 0 1/ \0 -sin 8’ cos 6’/ \z’/.

The relationship of the primed and double-primed coordinate axes is given in Figure
22. The x’ axis is the symmetry axis of the reflector, the y’z’ plane is parallel to the

front face, and the x” axis is parallel to the beam after it enters the cube corner.

Figure 22. Relationship of x’,y’, z’ and x”,y”, z” axes.
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If the corner cube is hollow, the reflections can be done for all six possible
sequences of reflections by taking the incident beam, given by the vector x" = -1,
y” = z"= 0, and reflecting it from each of the normals to the faces in the double-
primed coordinate system. The y” and z” coordinates of the reflected beam give
the deviations from the incident direction. The effect on these deviations due to refrac-

tion when the rays exit from a solid cube corner is discussed below.
2.11,1 Effect of refraction on beam divergence

Let the incident beam on the cube corner be in the direction (0, ¢) and let the

direction of the beam after refraction be (0’, ¢’), where

sin 4 = n sin ¢’

Owing to dihedral-angle offsets, the direction of the retroreflected beam before being
refracted out of the cube corner is (6’ + do’, ¢’ + d¢’) for a particular order of reflec-
tion. After refraction, the direction becomes (® + do, ¢ + db), where

0+do=0"+do" |,
do=do’
sin ( + dd) = n sin (6" + dp’)

Since the arc distance between (®’, ¢’) and (6’ + d0’, ¢’) is s’ = sin ¢’ d6’ and that
between (0, ¢) and (6 + d6, ¢) is s = dO sin ¢, the deviation of the ray perpendicular to

the plane of incidence has been increased by the ratio s/s’:

do sing _ sind _

s _
s’ 3 sing’ sin¢y o °

]

To obtain the change in the component of the deviation in the plane of incidence, we
expand sin (¢ + db) and sin (’ + db’), which yields
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sin (p + dp) = n sin @’ + &)

sin ¢‘cos‘ db + cos ¢ sin dp = n(sin ¢’ cos d¢’ + cos ¢’ sin d¢’) .
Since dp and db’ are very small, we ~have approximately

sin¢ + dp cosd=nsin¢’ +ndp’ cos ¢’ .
By using sin ¢ = n sin ¢, this reduces to

db cos ¢ = n dp’ cos ¢’

Therefore, the component of the deviation parallel to the plane of incidence is

increased by the ratio

cos ¢’

%’=ncos¢ :

2.11.2 Beam spread at normal incidence

The beam spread at normal incidence when all dihedral angles are offset by an
equal amount is given by the formula (Rityn, 1967)

y=% V6nd ,

ol >

where, following Rityn's notation, & is the angle by which the dihedral angles exceed
90° and vy is the angle between the incident and the reflected rays. This formula is
good to first order when the dihedral angles are nearly 90°. If the deviation vy is
large compared to the beam spread due to diffraction, the positions of the reflected
spots in the far field can be accurately predicted. If y is on the order of the spread-
ing due to diffraction, the formula represents the deviation of the exiting phase fronts
exactly, but the positions of the maxima in the far-field pattern are altered as a
result of interference among the six reflected beams. In this case, a diffraction
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calculation for the whole cube corner is necessary in order to predict the intensity
distribution in the far field to a sufficient accuracy.

2.11.3 Phase gradients due to dihedral—angle offsets

Let the direction of the reflected beam from a cube corner for a particular
sequence of reflections be given by the unit vector

where -% points toward the illuminating source. Since the dihedral-angle offsets are

assumed to be small, we have

szl ,
v <1 ,
v «1 .
z

a= kvy ’

b= kvZ ,
where

k=2n/\ ,

\ being the wavelength.

Figure 23 shows a ray going to the vertex of a hollow cube corner. The two

reflected rays correspond to different orders of reflection from the back surfaces,
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which results from the incident ray being infinitesimally displaced from the vertex

in different directions. Two factors are evident from the diagram, but they can be
neglected because Vg and v, are so small. First, the space between each ray and the
incident ray is a dead spot containing no reflected radiation. Second, the phase fronts
drawn perpendicular to the unit vectors, giving the directions of the reflected rays,

do not intersect the incident ray at exactly the same point. In diffraction calculations,
the phase difference due to dihedral-angle offsets will be taken as zero at the point
where the phase fronts intersect the incident ray going to the vertex. These effects
are insignificant in terms of their effect on the far-field pattern. A larger effect,
which has also been neglected, is the reflecting area lost owing to the rounding of the
back edges to prevent chipping in solid cube corners.

INCIDENT

v

Figure 23. Relationship of phase fronts for different sectors.

2. 12 Six Sectors

A ray retroreflected from a cube corner undergoes three successive reflections
at the back faces. The order in which the reflections occur is determined by where
the incident ray strikes the cube corner. Since the direction and polarization of the
reflected ray may depend on the order of reflection, we must determine the regions
corresponding to the six orders of reflection.
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In Section 2. 11, the normals to the reflecting surfaces were computed in the
x",y",z" coordinate system. The x” axis is antiparallel to the incident beam after
refraction into the cube corner, and the y” axis is in the plane of incidence. In
Figure 24, the projections of the normals onto the y”z” plane are shown as two-
dimensional vectors labeled 1 to 3. The dotted-line vectors 1’ to 3’ are antiparallel,
respectively, to the first three. These six vectors form the angular boundaries of
the six sectors of the cube corner as viewed from the direction of the incident beam
inside the reflector. Let the reflecting faces be identified by their unit normals.

The three-digit number in each sector gives the order of reflection for light emerging
from that sector. The order of reflection is determined from the principle that the
incident and reflected rays are symmetrical with respect to the vertex. For example,
all rays leaving the sector between the 1 axis énd the 3’ axis must have originated in
the 1’'-3 sector. The normal to the 1’-3 sector is the 1 axis, and that to the 1-3’
sector is the 3 axis. By a process of elimination, since the first reflection is from
the 1 plane and the last from the 3 plane, the second is from the 2 plane. The order
of reflection is therefore 123, as shown in the 1-3’ sector.

/"

/"

Figure 24. Order of reflection for each sector.
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The angular boundaries of the six sectors will be modified by refraction of the
rays at the front face. Let an x,y, z coordinate system be set up outside the reflec-
tor. The x axis is antiparallel to the incident beam outside the cube corner and
collinear with the ray to the vertex. The z and z” axes are parallel, and the y axis
is in the plane of incidence. The boundary lines of the Ith sector outside the cube

corner are given by the Ilch vector in the yz plane, whose components are

=y COS O
1791 cos ¢’ ’?

where
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3. ACTIVE REFLECTING AREA
In this section, analytical expressions are derived for the active reflecting area
of a retroreflector whose face is in the shape of a circle, triangle, or hexagon. For
all cases, the separation of the input and output apertures in the plane of the front
face is given by

D=2Ltan¢’ ,

where L is the length of the cube corner and ¢’ is the angle of refraction:

¢’ = sin”? <%‘3> s

in which n is the index of refraction and ¢ is the angle of incidence.

3.1 Circular Retroreflector

The active reflecting area of a coated circular retroreflector is independent of
the azimuth angle of the incident beam and is a function only of the angle between the
beam and the normal to the front face. The input and output apertures are circles in

the plane of the front face.

Let the radius of the front face be r. The maximum possible value for r for a
given L occurs when the circular face is tangent to each of the reflecting faces (and
perpendicular to the symmetry axis of the cube corner). In Section 2.11, it was
shown that the angle between the symmetry axis and each face is the angle whose
tangent is 1/¥2. From Figure 25, we see that

max _ 1

L N
or

r =—£

max /9

29

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

FT979SACSRI382: Z..n AL

FRONT FACE

BACK EDGE

tan ' (1/4/2)

REFLECTING FACE

Figure 25. Ratio of cube-corner length to the radius of the front face.

The active reflecting area is cos ¢ times the intersection of two circles of radius
r separated by the distance D. The intersection of the two circles is four times the
shaded area shown in Figure 26. The angle 0 is given by

0= cos ! <P—/—2> .
T

Figure 26. Active reflecting area for a circular retroreflector.
The area of the sector OAB is

2

H

2.0 _ 289
(M) or =T 3
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and the area of the triangle OAC is

$ @)@ ono-Drgme

The active reflecting area is

4cosd <r22__2r_zsl_1;n_€1>___ (2r26—Drsin6) cos ¢ ,

which is zero when

v
=

le)

The cutoff angle ¢c is defined by

DC
2T

Substituting D_ = 2L tan ¢é into the above equation, we get

2L tan ¢/,

— =2z '
r - -lr
q>c—tan T

From Snell's law,
6,=sin”’ (nsing’)
c c

In summary, if D/2 < r, the active reflecting area of a circular retroreflector is

area =(2r29 - Dr sin 0) cos ¢ = (2r26 - 2r2 cos 6 sin 8) cos ¢

= 2r2(9 - cos O sin 0) cos ¢

31

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

YSAGSR. 382 J o AT

I'I_

where

-1 D
6 = cos or

If D/2 =r, the area is zero.

3.2 Triangular Retroreflector

The active reflecting area of a triangular retroreflector is independent of the
azimuth as long as the intersection of the input and output apertures has six sides.
A somewhat lengthy calculation is required to derive this simple result. When the
overlap has four sides, there is an azimuth dependence, which is repeated every 120°.
Only cases with 6 between 0° and 60° need be considered, since the result for 6
between 60° and 120° is the same as for 120° - 6. Let the radius of the inscribed
circle in the front face be r. The maximum value of r is L/v2, which occurs when
the circle is tangent to the reflecting faces. Let W be the width of the hexagonal
active reflecting area at normal incidence (see Figure 27). The relationship of W and
r is

w//3

\ )

Figure 27. Triangular retroreflector at normal incidence.
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The analysis is divided into two cases. In Case 1, which occurs at small values

of D, the active reflecting area has six sides. Case 2 runs from the transition point

to the cutoff of the cube corner, and the active area has four sides.

The following areas must be calculated in order to get the overlap of the input and

output apertures in Case 1, as shown in Figure 28.

area_I=-%_i_1
1. 1 | .
—22\/,37(W-Dcos9+\/'?7Dsm9.)§(W-Dcos9+\/§Ds1ne)
=—l—(W-Dcos9+x/’3—Dsine)2
8/3 ’
area =1 5j bk
ap=7gh

= 2 (/3D sin 6) (D sin 6)

%Dzsinze ’

areap = ab (ae - Le)

= (W - D cos 6)[

(W< 2D cos 0) -Dsmﬂ
V3

(W - D cos 8) (W + 2D cos 6 - V3D sin 8)

@ |-

The overlap of the two aperatures is
overlap= 4 area; - 2 areap + areap;
(W - D cos 6 + V3D sme) - V3D? sin® 6

2f‘

1
+ﬁ(W-Dcose)(W+2Dcos9-¢'3'Dsin6) .
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Figure 28. Triangular retroreflector, Case 1.

CALCULATION OF DISTANCES IN FIGURE 28

ab = the width of the hexagon minus the displacement of the apertures in
the 6 = 0° direction

=W-Dcos 6

cd = the height of a star point plus the displacement of the apertures in the
8 = 0° direction

=!2V-+Dcose
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Figure 28 (Cont.)

— 2 — 2 /W
ae=—=—cd= —= (= + D cos 0
V3 V3 N2 )
1
= —_— + 2D cos 6
=W )

fg = the height of a star point minus the displacement of the apertures in

the 6 = -60° direction

=3 - D cos 60° + 0)

- D(cos 60° cos 0 - sin 60° sin 0)

—D(—%cose—\/—g-sin(a)

1l

(W - D cos 6 + V3D sin 6)

— 2 —
ah=— fg

V3

=—\/.l-_-(W D cos 6 + V3D sin 6)
=13k

_F(W D cos 6 + V3D sin 0)
— V8 = _ =
ai= -Ea_h g

-Zl(W D cos 6 + V3D sin 0)

bj=2ai -ab= (W - D cos 8+ V3D sin 8) - (W - D cos 6) = V3D sin 6

b b_ D sin @

=L
ey

ge=bk=D sin 6
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After evaluating equation (3-1) by use of an algebra computer program, we get the

following result:
overlap = -\/23 (VV2 - Dz) .

The evaluation, though lengthy, is straightforward and involves nothing more com-

plicated than recognizing the identity —D2 cos2 0 - D2 sin2 6= -D2.

The active reflecting area for Case 1, then, is

g (W2 - Dz) cosd . (3-2)

The transition from six sides (Case 1) to four sides (Case 2) occurs when
j=ai ,
V3D sin 6 =l(w— D cos 6 + V3D sin 6)
2 I

2V3D sin6=W -Dcos ® +V3Dsin® ,

V3D sin6=W -Dcos 6 . (3-3)

The two cases are thus defined by

Case 1: V3Dsin6<W-Dcos6 |,

Case 2: V3D sin® >W - D cos 6

The geometry of the active reflecting area for Case 2 is shown in Figure 29. The

intersection of the apertures for Case 2 is

BEX%=%3(W—DCOS ) (2W + D cos 6 - V3D sin 6) .
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Figure 29. Triangular retroreflector, Case 2.

CALCULATION OF DISTANCES IN FIGURE 29
be=W - D cos 0

cd== - D cos (60° + 6) = Tg (from Case 1)

(W - D cos 6 + V3D sin 6)

Il

S

cd

&
I

(W D cos 6 + V3D sin 8)

Il

sl s

o
1}
‘”l

-¢cb

)

W——(W D cos 6 + V3D sin 0)

W - \/._(Dcose+x/'_Ds1ne)

ol b

(2W+Dcos6 V3D sin 0)
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The active reflecting area is

—Jc?/% ‘(W -D cos 8) 2W + D cos 6 - V3D sin6) . (3-4)

Cutoff occurs when
be=W-Dcos 6=0 |, (3-5)
and thus the active reflecting area is zero when

Dcos O6>W

Since equation (3-2) for Case 1 is independent of 6, there are no special formulas
for different azimuths. When 6 = 0°, the cutoff and transition points coincide, so the
reflecting area is given for all 4 by Case 1. The cutoff angle for 6 = 0° is obtained
by setting cos 6 = 1 in equation (3-5), which gives

W-D=0 ,

w=D .
Substituting D = 2L tan ¢/, we have
2Ltan¢, =W ,

oo ey saml (W
¢/ (0= 0°)=tan <2—L->

The active reflecting area for Case 2 with 6 = 60° is obtained by putting cos 6 = 1/2
and sin 6 = V3/2 in equation (3-4), giving
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%i (W - D cos 6) (2W + D cos 6 - v3D sin 6)

6=60"°
_ cos Q' D_ 3. =Ccos - -
...—fsfi(w_z)(zmz-zn) —im. (2W - D) (2W - D)

_Cosd — 2
973 (2W--D)" .

The transition for 6 = 60° using equation (3-3) is

V3D sin 6 = W-D cos 6
8=60° 0=60°
f?TD-*g—§=W--§ ,
%D+12)-=W s
D=W/2 ,

while cutoff for 6 = 60° using equation (3-5) is defined by
W -Dcos 6 =0
06=60°

D
W-3

=0 ,
D=2wW .

Substituting D = 2L tan ¢é , we get
2L tan ¢/ = 2W

o], (0= 60°) = tan™! (-‘g) .

This is the largest possible cutoff angle for any retroreflector design. If application
of the formula i
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leads to imaginary values of b then ¢ c = 90°.

In summary, the active reflecting area of a triangular cube corner is given by
the following formulas for the range 0° < 6 < 60°. For V3D sin® < W - D cos 0,

area = —?(Wz - D2) cos ¢

for V3D sin® > W - D cos 6 > 0,

ama=9%—%im—ncose) @W + D cos 6 - V3D sin 6) ;

and for W - D cos 6 < 0,

area=0 .

The active area for other values of 0 is obtained by using the following symmetry

properties:

area ()= area (6 + N X 120°)

)

area (8) = area (-6) |

area (6) = area (120° -6) ,
where N is an integer.

3.3 Hexagonal Retroreflector

The active reflecting area of a hexagonal retroreflector varies with the azimuth
angle 0 except at normal incidence. This variation repeats every 60°. Also, since

all cases between 30° and 60° give the same answer as for 60° - 6, we need consider
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only the cases where 6 is between 0° and 30°. The active reflecting area may be
bounded by either six sides (Case 1) or four sides (Case 2), as shown in Figure 30,
depending on the values of 6 and 4.

a) b)

Figure 30. Hexagonal retroreflector: a) Case 1, b) Case 2.

The width W of the hexagon is 2r, where r is the radius of the inscribed circle
(see Figure 31). The maximum value of r for a given L is

W/J/3

Figure 31. Hexagonal retroreflector at normal incidence.
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r =
max 9

as in the case of the circular reflector; this value occurs when the inscribed circle

is tangent to the reflecting surfaces. In the diagram for Case 1 (Figure 32), the
following areas must be calculated:

(ok + hi) bj

1l
DO =

area.I

1l
DO =

[{—l_-ZW V3D cos 6 - Ds1ne)+ (W \/'_Dcose+Ds1neﬂ
X%(W—ZDsme)

L(3W 2V3D cos 0) (W - 2D sin 6) ,

4/3
area = be de

=Ds1’n8[—;3_—(2W—w/’§Dcose—Dsme)]
v

areay; = area; .
The intersection of the apertures is
area = 2 area; + areap

=-21- (VW - 2D cos 0) (W - 2D sin 8) + D sin 9[;% (2W - V3D cos 6-D sin 6{, .

Evaluating the above expression gives

area=7_13—[—§-W2 - DW (V3 cos 0 + sin 8) + D sin 6 (V3 cos 6 - sin eﬂ
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The active reflecting area for Case 1, therefore, is

uf; [% W2 - DWW3 cos 6 + sin 0) + D sin 6 (/3 cos 6 - sin 9)] - (8-6)

The transition from Case 1 to Case 2 occurs when

— 1
hi=— W -v3Dcos 6 +Dsinf)=0 . (3-7)
= W )

The two cases are defined by

Case 1: W >D@3cos6 -sing) ,

Case 2: W < D(/3 cos 6 - sin 8)

In the diagram for Case 2 (Figure 33), the area of intersection consists of area II
plus two times area I. Defining

T=FE=l3(2W-v'§Dcose-Dsine)

V3
(3-8)
=—\/.1-3=[2W—D(\/§ cos 0 + sin 0)]
and
— _ V3 3
j =-{2—_bksl/2———T ’
we have
1= 1, (V3
area.l—--ib j -§T<2 T>
V3,2
=-4—-T ,

areaH=Eb_k= (D sin6)T
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Figure 32. Hexagonal retroreflector, Case 1.

CALCULATION OF DISTANCES IN FIGURE 32

bc=D sin

ac=D cos 0

fc

9~ al-
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Figure 32 (Cont. )

cd = fe
=71_é-Dsine
— — 1
f=ac-fc=Dcos6 -—=Dsin 6
a S _\[3—
gh=af
1
=Dcos 0 -—Dsinbd
V3
—=_— —=—_ W 1 ;
hi=gi-~-gh=— -Dcos®+—D-sin6
g g \/’g S _\/'3'
=-%0N—f§Dcos6+Dsme)'
Bj=Cj-be=% -Dsino
1 .
=§(W-2Dsm9)
de=2ae -ac - cd
=%-Dcose-7.%nsme
=7l_§(2W—f33_Dcose—Dsin0)
bk = de
=71_§(2W-V§Dcose-nsine)
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Figure 33. Hexagonal retroreflector, Case 2.

CALCULATION OF DISTANCES IN FIGURE 33

=g% Dcose--\/i—S-DSine
=%(2w-w/'§Dcose—Dsme)
ﬁéde
=—\/,l-§(2w-w/’§Dcose-Dsin6)
— V35—
jm = 3= bk
=§l(2W-w/'37Dcose—Dsin9)
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and the intersection of the apertures is

area = 2 areal_I + :a.rea.II

=\/2--—§T2+DsineT .

The active reflecting area for Case 2 is
cos¢<Dsin9 T+§T2)=T(Dsme+gT)cos¢ . (3-9)

This expression has been evaluated by using an algebra computer program, with the
following result:

2_‘3/5’?:&& [W(W - V3D cos 0) + D” (cos” 0 -%)] . (3-10)

Cutoff occurs when

1
T=— 2W-D\f§cose+sine]=0
= |2 - e N=0

(3-11)
and the active reflecting area is zero when

D(/3 cos 6 + sin 8) > 2W .

The cutoff angle cb'c as a function of 6 can be computed by substituting D = 2L tan ¢é
into the above the expression, which yields

2L tan ¢, (V3 cos 6 + sin 0) = 2W

-1 \%%
5 = t. . -
b tan [L(w/'?f cos 0 + sin 6)] (3-12)

The unrefracted cutoff angle ¢, 1s

¢, = sin” 1 (n sin ¢/)
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The cutoff angle is largest when 6 = 0° and smallest when 6 = 30°. At 30°, the
transition and cutoff points coincide, so a single formula expresses the active reflect-
ing area for all values of 4. The active reflecting area for this special case is

obtained by substituting

6= 30°

cos 6 =

D] =
N|§| .

into equation (3-6) for Case 1:

c_os_i[_?iwz - DW(/3 cos 6 + sin 8) +D? sin 0 (/3 cos 0 -sine)]'

v L2 0=30°
2
~esefdy? py(Z. 1), 20 (2
7 2V DW<2+2>+ 2 \2 2)

- C959 1aw? _ 4pw + D2
VG [ 1

= COS$ aw - -
273 CW - D) (W-D)

The cutoff angle for 6 = 30° using equation (3-12) is

W |
L V3 (V3/2) + (1/2)])

$!, (0= 30°) = tan™" {

= tan™! (-
= 2T,

The other special case, 6 = 0°, is obtained by setting

6=10° ,
cos6=1 ,

sin6=20
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in Case 1. The formula before transition using equation (3-6) becomes

COS 9

V3
cosg 3 2 w/—DW>

[’2‘ W - DW(/3 cos 6 + sin 6) + D? sin 6 (/3 cos 6 - sin ei’

=W(\/2-—§W—D> cosod ,

and after transition, by using equation (3-8) with® =0°

1 . 2
T = 0°) = [2W - D (V8 cos 6 + sin 08)] =—W-D
( ) el ( )e=0° N )
in equation (3-9) it becomes
i V3 _V3 V3
T(Dsme+7T)cos¢e=0o—TT oscl>-§— ‘/._W D) cosd .

Transition from Case 1 to Case 2 at 8 = 0° occurs using equation (3-7) when

[W - D3 cos 6 + sin 0)]
0=0°

L
V3
W -

V3D=0 |,

while cutoff takes place using equation (3-11) when

— [2W - D (/3 cos 6 + sin 8)] =0=2W -v3D .
V3 0=0°
SubstitutingD=2Ltan¢é,weget
2W=wf§D=2V§Ltan¢’c ,
or
-1/ W
7 (0=0°)=tan " (—] .
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In summary, the active reflecting area of a hexagonal cube corner is given by the
following formulas for the range 0° < 6 < 30°. For D(/3 cos 6 - sin 6) < W,

area = %9 [—3- W2 -DWW3 cos 6 + sin 0) + D2 sin & (/3 cos O - sin 9)} ;
for D(3 cos 8 - sin 8) > W and D(V3 cos 6 + sin 6) < 2W,

_ 2 cos 2 2 1
areat———\/_3.—i I:W(W—w/ﬁDcos 8)+ D (cos G_Z)_J ;

and for D(/3 cos 6 + sin 0) > 2W,

area= 0

The active area for other values of 0 is obtained by using the following symmetry

properties:

area (0) = area 0 + N X 60°) ,
area () = area (-0) ,

area (6) = area (60° -6) ,
where N is an integer.

3.4 Cutoff Angles for Total Internal Reflection

The cutoff angle for total internal reflection is defined by the equation
nsinr =1 , (3-13)

c

where r, is the angle of incidence of the ray. There will be total internal reflection

whenever the incidence angle r satisfies the relation
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1

Bl

r>r = sin_
c

The incidence angles that do not give total internal reflection are contained in a cone
of half-angle r, about the normal to the dielectric boundary (see Figure 34).

e

INDEX OF
REFRACTION n

Figure 34. Total-internal-reflection cone.

As shown in Section 2.2, the angle of incidence of the light with a particular
reflecting face in a cube corner is the same as the angle that the incident beam makes
with that face after refraction at the front surface. This property makes it possible
to visualize the directions of the incident beams that do not undergo total internal
reflection at all the back faces. In Figure 35, a quarter-cone of half-angle r, has been
drawn about the normal to each reflecting face of a cube corner. If a vector drawn

/

Figure 35. Total-internal-reflection cones about each axis.
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from the origin antiparallel to the incident beam (after refraction) lies within any of
the three quarter-cones, the beam will not undergo total internal reflection when it

is incident on the face whose normal is the axis of the cone. As depicted in Figure 35,
the cones do not overlap, and total internal reflection is lost at only one face in this
case. £ r, is greater than 45°, the cones intersect and the incidence angles in the
intersection lose total reflection at two faces. Viewed from the front face of the
reflector (Figure 36), a Y-shaped region is formed by the intersection of the cones

Figure 36. Region of total internal reflection.

with the front face. The ray that goes to the vertex must be incident on the front
face within this Y-shaped area to give total internal reflection. Let ¢ be the angle

of incidence of the beam on the front face (measured from normal incidence) and ¢’
be the angle after refraction. The smallest value of ¢ that does not give total reflec-

tion is ¢é , which is given by

,=—
q)c a=r, »
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where a, the angle between the symmetry axis of the prism and a back edge (see
Figure 37), is given by

a= tan—l V2.
Substituting values for a and L We get

-1

Bl

p, = tan"1 vZ - sin

SYMMETRY
a AXIS

BACK EDGE

Figure 37. Minimum cutoff angle for total internal reflection.

For a given ¢’, we can compute the azimuth limit 0. for total reflection. Let 6.
be measured from the projection of a back edge onto the front face, as shown in
Figure 38. The circle is the intersection with the front face of a cone of half-angle
¢’ about the symmetry axis of the cube corner. The Y-shaped area is the intersec-
tion of the three cones of half-angle r, with the front face. To c/empute 0, let the

- symmetry axis of the prism be the z axis, and let the back edge A defining the origin
of 9 be in the xz plane (see Figure 39). The angle a between the symmetry ams
(z ax1$) and the back edge (A) has been shown to be tan" \/— The unit vector A
is given by
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Figure 39. Diagram for computing total-internal-reflection cutoff angles.

A
A = (sina, 0, cos a)

73 T3

The unit vector QI antiparallel to the incident beam after refraction is
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A
V= (sin¢’ cos 6. sin ¢’ sin 6, COs 6’)

In order for the angle between ¥ and A to be the cutoft angle r , we must have

Cos T =z/6\x0
C

=V—f§—sin¢' cos 6 +—l-cos¢’
V3 ¢’ V3

Solving for 0, we get

V3 cos r, - cos ¢’ =2 sin ¢’ cos 6, >

_1(V3cosr, -cosg’
6 = . -
c” % V2 sin ¢’ (3-14)

Equation (3-13) can be used to rewrite cos r, as

_ .2 _ 1 _1 2
cosrc—‘/l—sm rc— ‘/l nz—n n -1

Also, cos ¢’ can be written as

.2
cos ¢’ = ‘/1-sin2¢ =‘/1—-§E2—¢’=-I-11 ‘/nz-si.nzqa .
n

Substituting these expressions into equation (3-14) gives

6 = cos 1 [\/—3— (1/n) Vo? - 1- (1/n) n? - sin® ¢}
¢ V2 sin ¢/n

- cos™! <\/§ Vo - 1- Vo? - i’ ¢>

V2 sin ¢
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For a thorough discussion of the loss of total internal reflection in uncoated cube
corners, see Chang (1970). In his paper, Chang gives sin ¢ as a function of ec. If we
convert his notation to ours, his result becomes

V6 nz-lcose.c—‘[?;—2n2sin29
sin¢ = g

2
2 cos ec+1
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4. POLARIZATION

- A beam of light retroreflected from a solid cube corner undergoes two refractions
‘and three reflections. Each encounter with a boundary introduces a change in either
the amplitude or the phase or both. Since the changes are different for the components
of the ray parallel and perpendicular to the plane of incidence, the polarization state
of the ray is also changed. Changes in amplitude affect the total energy retroreflected
and thereby reduce the apparent active reflecting area of a cube corner. The diffrac-
tion pattern of the prism is affected by both phase and amplitude changes. The follow-
ing three cases will be considered:

A. Transmission across a dielectric boundary.

B. Reflection from a dielectric boundary, including
1) Ordinary reflection.

2) Total internal reflection.

C. Reflection from a metal surface, including
1) Perfect metal.
2) Real metal.

At each encounter with a boundary, the ray must be resolved into components
parallel and perpendicular to the plane of incidence. The coordinate system with
unit vectors defining the directions of the components is shown in Figure 40. The

angle of incidence is 6 0’ and the angle of refraction is 6.,. The complex vectors for

1’
the incident, refracted, and reflected electric vectors are E E and B” , respec-

tively, given by

E= E_LE_L+E g,

U B TR 1B T

f EI/ 1/ + E// EII .
L7l il
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The unit vectors are real, and the coefficients are, in general, complex. The trans-
mission and reflection coefficients used in this report are taken from Stratton (1941,

pp. 494-506).

REFRACTIVE INDEX n >

REFRACTIVE INDEX n

Figure 40. Polarization coordinate system.

4.1 Transmission across a Dielectric Boundary

-—
After refraction across a dielectric boundary, the components of E’ are given

by the Fresnel relations

2cos B, sinb
E/ = 0 __lg
L sin(90+el) 1l 2

2 cos 6, sin 6
0 1 E

sin (8, + 6;) cos (6, - 6,) I

’:
Ej
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At normal incidence, both formulas reduce to the same relationship:

E! = E ,
L n, +17°L
2
E/ E s
Il n,,+ 17
with
h ol
- b
12 n,

where n; is the index of refraction of the transmitting medium and n, is the index of
refraction of the incident medium. The angles 6 0 and 6 1 are related by Snell's law

n2 smeo=n1 sinel .

The transmitted ray is always in phase with the incident ray. In the case of a light
beam crossing the front face of a cube corner at an incidence angle ¢ and a refracted
angle ¢/, we have

eo=¢ ’
61=¢’ ’
n12=n

as the beam enters the cube corner and

0=¢' ’
91=q> ’
n =1
12 " n

as it leaves the retroreflector.
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4.2 Reflection from a Dielectric Boundary

4.2.1 Ordinary reflection

In uncoated cube corners, the reflection at a particular back face is partial when
the incidence angle satisfies the relation

nsin90<l

and total when
n sin 60 =1

The reflected electric field components E J’: and E’ﬁ in the case of partial reflection are

sin (8, - 6;)
EV= = ——————=F
L sin (6, +6,) "L ’

tan (6, - 0,)
E” = 0 1'p
I~ tan Bptop 2

which, at normal incidence, reduce to

n12 -1
B =-a 71 E (4-1a)
12
n.,-1
w12
=2 __E . (4-1b)
] n12 + 171

In the case of a ray incident on the back face from inside the solid cube corner,

=]
1l
=3
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Therefore, equations (4-1) become

//_;_ 1/n) -1 __1-no _n-1
Ef= (l7n)+‘1E.L e el nr 1ol 7

no_n=1
Ey=-a71

E" .

The difference in sign is due to the fact that at normal incidence,
" —
Brog

A
Br=-f) .

4,2.2 Total internal reflection

For total internal reflection (n sin 6 0= 1), the components of the reflected field

are
n —
Ej=2,F
" o—
=20 By
where

n cos 6 —i\/nzsinze -1
0 0
Z = ’

. 2 <in2 _
ncos90+1’/n sin 60 1

‘/2 .2
coseo—ln n- sin GO 1

7. = 2___
I cos 60 + in‘/n2 sin 90 -1
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4,3 Reflection from a Metal Surface

4.3.1 Perfect metal

- The case of reflection from a perfect-metal surface (infinite conductivity) gives
the simple relations

4.3.2 Real metal

Reflection from a real-metal surface produces changes in both phase and ampli-
tude. The reflecting properties of the metal are specified by the complex index of '
refraction a + iB. For a perfect metal, f = «. If the conductivity is zero, = 0 and
the material is a perfect dielectric with index of refraction a. The components of the
reflected electric field are

n -
E/=2E

I/ —
Ey=2,E, ,

where

(n cos eo-q) - ip
Z_L= (n cos 60+q)+ip ?

[cos 90(0.2 - ﬁz) - nq] + i(2ap cos 60 - np)

A
I [cos 60(a2 - [32) + nq] + i (2aP cos 60 - np)

q= V(C+D)/2 ’
p=V(C€-Dy2 ,
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C= ‘/4.12;32 +@2-p" -l sin”0y)°

D=a - g% -nsin’ 0,

Values of a and B for certain metals are given in Schulz (1954).

4.4 Polarization State of Each Sector

The direction of incidence of a beam on a cube corner is specified by the angles
6 and ¢, where ¢ is measured from the normal to the front face (see Figure 41). The
polarization state of the incident beam is given as a complex vector

NORMAL TO
FRONT FACE OF ‘ X
RETROREFLECTOR ~
¢ Z
l
|
|
y
I
|
|
I
1
T 7
AN | 7
| yd
P N /
N | 7

Figure 41. Coordinate system for an incident beam.
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- N A N
E=Exx+Eyy+Ezz ’

where E_ Ey and E_-are complex numbers and x, y, and 7 are real unit vectors.
The unit vector X pomts toward the source, y is in the plane of incidence pointing in
the direction of increasing ¢, and z is perpendicular to the plane of incidence pointing
in the direction of increasing 6. The polarization state of the beam incident on an
array is given as a complex vector E’ in a coordinate system related to the coordinate
system of E by a rotation about the x’ axis through an angle y. The components of

E are

Ey=E§cosy+E; siny ,

= _ ! i ’
EZ— Eys1ny+Ezcosy

Both EX and E;{ are zero because electromagnetic radiation is a transverse wave.

If there are dihedral-angle offsets in the cube corner, the polarization state EI of the
radiation emerging from the Ith sector will have a small component in the x direction
because the direction of the emerging beam has been changed slightly. This com-
ponent will not be considered in the polarization calculations. The effect of dihedral-
angle offsets will be included onIy through the phase changes that they produce across
each sector.

The polarization states EI

changes in polarization due to refraction on entering the cube corner, to reflection at

of the six sectors are obtained by computing the

each of the back faces in the appropriate order for each sector, and to refraction on
leaving the cube corner. The changes in the components of the polarization vector
parallel and perpendicular to the plane of incidence were given in Sections 4. 1, 4.2,

and 4. 3, and the order of the reflections for each sector was given in Section 2. 12.

The formulas for the change in polarization during refraction can be applied
directly to the incident polarization state E since Ey is parallel and Ez is perpendicular
to the plane of incidence. After refraction, the direction of the beam is (8’, ¢’), where
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'=0 ,

¢’; sin~ 1 <M> .

n

- : A
Section 2. 11 showed how to compute the normals n,, 32,

coordinate system. This system has the x” axis in the direction 0", ¢’), the y” axis

AN
and n, in the x",y", 2"

in the plane of incidence in the direction of increasing ¢’, and the z” axis perpendicular

to the plane of incidence in the direction of increasing 6’. The polarization state EO

after refraction into the cube has the components

E.,=0 ,
En=RE
E,,=RE, ,

where RIl and R N are coefficients giving the change in the parallel and perpendicular

components of the polarization vector due to refraction. The direction of propagation
A

after refraction in the x”,y", z” coordinate system is Vo 8iven by

A A
v, =-x" .
0

In order to apply the changes in polarization at each reflection, the polarization
vector must be resolved into components parallel and perpendicular to the plane of
incidence (see Figure 42). Let OIJ be the unit vector giving the direction of motion
of the ray for the Ith sector before the Jth reflection takes place, and let ﬁlJ be the

polarization state for the ray with direction 9 For all sectors,

IJ-'
A _/\
Yo~ Vo
E,=E, -

A
Let be the normal to the plane from which a ray of the IIch sector is reflected on

th

its Jlc reflection. The direction of motion after the J reflection is
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Figure 42. Unit vectors for parallel and perpendicular components of the electric
field.

A A A AA
Ve = 2(V.. * n.)n

VLar1~ VD v "wa

The unit vectors parallel and perpendicular to the plane of incidence, then, are

N ></\
ﬁ__?w Ny
1 A A ’
Vg X
A A A
Ey=E Xy,
AI/._.
EL—ﬁL ’
ﬁn =ﬁ//><$
(It TS A 5 N

The parallel and perpendicular components of the polarization vector ﬁIJ are
S N - A —
EIJ - By and EIJ - E 1 respectively. The components of EIJ are complex, and those

of ﬁ" and ﬁ | are real. To compute the dot product, we multiply the corresponding
components of the vectors without taking the complex conjugate of any of the numbers.

The polarization vector after reflection is
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. A /\’/
‘ EJ_)E ’

E 3 - E)E”+R
n - 1

AN
B g™ B €y " By 1%

where RII and R | are the complex coefficients giving the change in the parallel and
perpendicular components of the pqlarization vector due to reflection. After three
reflections, the direction of motion is nearly 27 if we neglect the effects of dihedral-
angle offsets. Since the y” and z” components of the polarization vector are parallel
and perpendicular, respectively, to the plane of incidence, the complex coefficients
R" and R n (giving the change in polarizatiin on leaving the front face) can be applifd
directly to obtain the polarization vector EI for each sector. The components of E

I
are therefore

E_=0 ,
X
=RE_, ,
E, =RE_,
1 4 %3

Peck (1972) gives a study of the polarization states produced by either single cube

corners or cavities consisting of two cube corners facing each other.
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5. DIFFRACTION

5.1 Diffraction Integral

According to Huygen's principle, the field up at a point p due to radiation emitted

from a surface s is

u=afueR dfn ’ (5-1)

where a is a constant to be determined, u is the field on the surface s, k= 27/,

\ is the wavelength, dfn is the projection of the surface element in the direction of
point p, and R is the distance from dfn to p. The constant a can be evaluated by con-
sidering the case of radiation from an infinite plane with u equal to a constant. The
value of u b must then be the same as u. The result of performing the integral for
this case (Landau and Lifschitz, 1962, pp. 167-168) shows that

(5-2)

The intensity Ip at point p is

Ip = upul’)“ .
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Let a coordinate system be set up with the x axis antiparallel to the beam
illuminating a cube corner and with the origin just outside the cube corner. The y
and z axes are parallel and perpendicular, respectively, to the plane of incidence.
Let an x’,y’, z’ coordinate system be established in the far field parallel to the x,y, z
system with the x and x’ axes collinear (see Figure 43). The reflected field from the
cube corner in the yz plane is u, and the field at point p in the y’z’ plane isu P’
Finally, let the distance between the coordinate systems be D.

CUBE X SOURCE : x/
CORNER Y | « |

| |
- > —>

Figure 43. Coordinate system for the far-field diffraction pattern.
5.1.1 Fraunhofer diffraction

When the distance D is very large and when the problem is restricted to cases
where the angular spread of the beam due to diffraction is small, equation (5-2)
reduces to the simpler formula of Fraunhofer diffraction. The distance R is given
by

R= D%+ (5 -y)% + (2 -2)°

= D‘/l +Bl§ [(y'-y)2 + (z'—z)z:’

=D {l + ;# [(y’-y)z + (z’-z)z]}

_ 1 /.,2 2. 2 2
~D+ﬁ(y' -2yy'+y" + 2z’ —Zzz'+z) .
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It is assumed that D is so much larger than the size of the area s that the quantities
y2/ 2D and zz/ 2D are always much less than a wavelength and can be neglected.
Therefore, -

I2 + le L’ ZI
R=D+I5et -y § fzﬁ)
Since it is desirable to have the diffraction pattern given in terms of angles
rather than as a function of y’ and z’ at a distance D, we can define the angular coor-
dinates of the observer (0 1289) as

Y -z
5 =17 > % =p >
so that R becomes

2
"y gt

2
R= <D +L23—> - (yel + Zez)

Substituting this for the factor R in equation (5-2) and setting R = D in the denominator,
we get

2. 2
= )\—11]-5 fu exp {lk |:<D + y—;]-)zi-> - (0, + zez)]}dy dz
S

S

The exponential outside the integral is a constant phase factor, which will disappear
when up is multiplied by u; to obtain Ip. It can therefore be neglected, resulting in
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1 f —ik(yel+292)
u ~ = ue

L~ 35 dy dz . (5-3)

S

5.1.2 Modified Fraunhofer formulas

In equation (5-3), the intensity Ip = upul’; is in units of energy per unit area per unit
time, and the formula contains the range in the denominator. But it is desirable to
compute diffraction patterns in a way that is independent of the range and the incident
field strength. These quantities can be provided when calculating particular cases by
using the range equation [eq. (7-12)] from Section 7. 11. Omitting the range causes
up to be in units of area — i.e., the results have to be given in a particular system of
units. The equation can be written in a dimensionless form, however, as follows:

-ik(y6, + z6

1+ 289)

E'(el,ez) = -é fu’ e
S

dy dz , (5-4)

where S is the active reflecting area at normal incidence and
u’ = u/u0 ,
in which u, is the incident field. Let a function F’ (8,,6,) be defined as

*
F'(Gl, 62) = E'(Bl, 92) E’ (el, 92)

In the above form, the intensity F’/(6 v 92) is unity at the center of the diffraction
pattern of a perfect retroreflector at normal incidence. The relationship of the
modified Fraunhofer formulas to the original forms is

- S
Up =Y %D E01:9) >
&2
I =—>— F'@,0,)L ,
p~ 22 O

where I = u u’*

0 oY 1s the incident intensity.
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In doing the integration over various sections of a cube corner, the formula

~ik(y® | + z6,)

1 " dy dz (5-5)

E(ei, 8y) = fu' e
will be used to calculate the pieces of the integral in equation (5-4).

5.2 Calculation of Diffraction Patterns from an Array of Phases

To calculate diffraction patterns from an array of phases, let the field u’ in the
modified Fraunhofer formula [eq. (5-4)] be given as an array Uy of field values at
the points O'p 23) where

yI= IAy I

zJ=JAz .

The complex number u’ is related to the amplitude A and phase 6 of the field by
u'=Ae'®= A cos &+ iB sin 6

Let the field E’(6 r 62) be given as an array EZ'[M at the points (0 117 eZM) where

6, =L A6

1L 12

=M A8

Oom 2

Since the aperture may not be rectangular, all values of Uy that are outside the
aperture can be set equal to zero. The area element Ay Az is S/N, where N is the

number of nonzero items in the upy array.

The modified Fraunhofer formula in the discrete case becomes

-ik[(I Ay)(L 48,) + (J Az)(M 48,)]

B1m= 'IIEZ“U © ’ (5-62)
1J
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—1(k Ay 20))IL -i(k Az A8,)IM

)
Z e 2 ) (5-6b)
]

' ZI'—'

Defining
Cl=kAyA91 ,
C,=k Az A8, ,

the expression for ELM becomes

1 -iC IL -iC 2JM

N uIJ €

zlw
“M
/\
1
=2
O
\_/E
“@ >
K
@]
-
~—,
=

1 -1C IL
i z , (5-7)
where
—iCz JM

Spa = 2 :uIJ © :

J

. -iC2
._All the complex exponentials in equation (5-7) are integral powers of e and

e-lcl. This very useful property results from the equal spacing between points
across the aperture and between points in the far field. If Ay = Az and A6 1= ABZ,
then C1 = 02 and all terms are powers of a single exponential. Since complex multi-
plication involves only four multiplications and complex exponentiation involves the
computation of two transcendental functions (a sine and a cosine) by means of series

expansions, it is much faster to compute the powers by repeated multiplication and
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to save all the powers in an array. If each of the indices has a range of n values,
there are n2 complex numbers to be stored (or Zn2 if C 17 02). A second property
that can be exploited to reduce computation time is the fact that S[M does not contain
the index L. For each value of M, the n quantities Sppp can be computed and saved
while the quantities E’LM can be computed for the n values of the index L. The
physical reason that S[M does not contain L is that the phase differences between the
rows across the aperture are constant for each row in the far field, and thus the
summation over each column of the aperture needs to be done only once for each row

in the far field.

A straightforward computation based on equation (5-6a) requires n2 complex
exponentiations per point, resulting in a total of n4 exponentiations for the whole
matrix. Equation (5-7) requires n2 complex multiplications to compute the powers
of the exponentlal. For each value of Spyp 1 complex multiplications are needed,
for a total of n for all SIM Each point E’ - = requires n complex multiplications,

IM

for a total of n for all E’LM The complete computaticn therefore requires
2n‘3 + n2 = 2n3 complex multiplications, a considerable savings compared to n4

exponentiations.

5.3 Diffraction Integral for a Trapezoid

To calculate the diffraction integral for a trapezoid, let the field u’ be given by

o = el(@y +bz) , (5-8)

over a plane surface with linear boundaries, where a is the rate of change of phase
in the y direction due to dihedral-angle offsets and b is the rate of change of phase

in the z direction. The Fraunhofer equation is integrable in closed form under these
conditions. Let the area be divided into vertical strips bounded by straight lines on
the top and bottom, as shown in Figure 44.

75

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

YSAGSR. 382 J o AT

rt

//z=02+ Soy

I

|

| |
Y Y2
Figure 44. Trapezoid aperture.

By employing the modified Fraunhofer formula [eq. (5-5)], the integral over the
area shown in the figure is

2 2 . ~ik (y8, + z8.)
E@ )= f ol(ay +bz) 1 2 dy dz
FYl z=Cl+Sly
Yoo 22"%Y i - ke )y + (b - ke,)z]
= f f : e dy dz
y=Y1 z=Cl+Sly
Defining
uza—kel s 6zb—k62 , (5-9)
we have
Y C +Szy
E(, ) J J @Y *82) 40 a4z . (5-10)
=Y, z=C +S1
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If g # 0, the integration over z gives

. T2 | (ily+B(Cy+ Sy M iy +B(C, + Sy
wp= [ Hie -e dy
y= 1
i Y, 1 ilpC, + (@ + BSy)yl -ilBC, + (@ + Syl .
= T e -e y .
Y':Yl -
If we further define
Q=a+pS , I=1,2 (5-11)
then
Y . .
2 iBCy +Qyy)  1(BC; +Q;Y)
E(a.,ﬂ)=f %[e 272 _ ]dy ) (5-12)
y=Y,

IfQ 1% 0, the second term in equation (5-12) is

Y . e .
J-Z ___l_el(BCI+QIY)dy=__l___l_ e1((301+Q1Y2)-el(ﬁCl+QlYl)
i FTIB R '
y=Y,;
Using
— I=1,2 _
Py = E’CI"'QIYJ ’ J= 1:2 : (5-13)
in the above expression, we get
Yo iBC, +Q.y) ip ip
J‘ R 1ydy=L<e 12 _ 11>
ip B, '
y—Yl
7
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sz | 60y + Q)

';6 e y = iﬁ 1Q2
y=Y,
o1 | P Par
PRy ’
and if Q2 =0,

Yo o i@C., +Q.y) Yo . iscC
f ie 2 2 dy = J -le 24
i Y B Y
y=Y, y=Y,
ipC

y=Y [eq. cont. on next page]
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= ¥ [Cy - Cp + (5, - Spy]ay -

Ifa=+0,
i 10.Y2 iO.Yl
E(o,,0)=—a(Cz-—Cl) e -e

' i iaY iaY > <io.Y iaY>
i 2 1), 1 2 1
+(82—Sl) [—; <Y2e -Yle +(12 e e s

while if a = 0, we have

Y
2
E(0,0) = f [(c2 -C)* (8 - Sl)y] dy
y=Y,

1l 2 2
= (Cy - C)) @y - Yy +5 (5, - 8 (¥ - )

= (¥, -Y)) [(Cz-cl)+-;-(s2-sl) (Y2+Y1)] .

In summary, ifp#0, Q, #0, and Q, # 0,

iP iP iP iP
E(a,ﬁ)=%|:-Q—1 <e 12_¢ 11> -Q—lz <e 22 e 21>] . (5-14a)
1
Ifp+0,Q=0, andQ, #0,
iBC iP iP
E(a,B)=-% [ie 1 Y,-Y, -QL <e 22 _ e 21)] . (5-14Db)
2

B +0,Q #0, andQ, =0,

ip iP e
1 <e 12 _ 11)_ie 2

E@,p =-% [51 (Y, —Yl)j\ . (5-14c)
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I£B+0,Q =0, andQ, =0,
E(,B) = & Y (1501 1602) 5-14d)
@B =5 T, -Yple '-e : (

fp=0, a0,

; icLY2 iCLYl
E(a’0)='E(Cz'Cl)<e -e

. iaY iacY iaY jaY
+(S,-8)) [—é<Y2e 2—.Y1e 1> +—%<e 2_e l)J . (5-14e)
a
Finally, if 8 = a = 0,
. .
E(0,0)= (Y, - Y;) {(02 =C+5 (Sy - 8)) (Y + Yl)] . (5-14f)

5.3.1 Factorization of the diffraction integral

As shown in Section 7.4, the angles 0, and 6, are
61=6’lcosy+9ésiny ,
62=—e’lsiny+eécosy s

14 4
where 91 and 62

diffraction pattern.

are the angles to the observer in the coordinate system for the array
The diffraction pattern of the array is given at a matrix of points (e'l, eé) at inter-
vals A0 in both directions. Let

’ —_
0lp=Lao ,

’ —
oh = Mao
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where L and M are indices labeling points in the array diffraction pattern. Substitut-
ing the expressions for e’l and 6’2 into those for 6 1 and 92, we have

0, =LABcosy+MAOsiny ,

1L

Bonr = - L AB sin y + M A0 cos y

2M

Putting these expressions into equations (5-9) gives

a=a-kAad (Lcosy+Msiny) , (5-15a)

B=b-kad (-Lsiny+Mcosy) . (5-15b)

The expression for QI from equation (5-11) can be substituted into equation (5-13)

for PU:
PIJ = BCI + (a + ﬁSI) YJ
= O.YJ + 5(0I + SIYJ)
=a¥;+BZyy (5-16)
where

Zi3=Cp+8Y;

in which CI is the slope of the boundary line, § is the intercept of the boundary line,
and Y J represents the integration limits in Y. Incorporating a and g into PIJ’ we get
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P =|a-ka8 (Leosy+M siny)]YJ+[b-kA9(—Lsiny+M cosy)] Zys

= a.YJ + bZIJ + Lk A8 (-.-YJ cos y + ZIJ sin vy)

+MkA9(-YJ siny-Z..cosy) .

1J
We can simplify this by defining

Uy = aY + bz ,

VIJ =k A6 (--YJ cos y + ZIJ siny) ,

WIJ =k A0 (--YJ siny - ZIJ cosy) ,

which gives us

Pry= Upy+ LV + MW . (5-17)

iPry '
The terms e L for a trapezoid in equations (5-14a, b, c) can then be written

e1P _ e1(UIJ + LV + MW,

. . L . M
iu iv iw.
e U(e IJ> <e IJ>

The above expression is the product of two factors, the first containing only the
index L and the second containing only the index M. When computing the diffraction
pattern for all values of L and M, the computation time can be reduced by precom-

: . iUy ( iV Wi
puting and saving the factors e e and \e . The powers of the expo-
nentials can be computed by repeated complex multiplication. Since I and J have two

values each, and since the range of L a.nd,vl\% is n, each matrix has 4n terms. It is
1

not necessary to store all the powers of e I

simultaneously; the values 9&7 M
E® 1L GéM) can be computed for all L for the first value of M and then e IJ) can

be raised to the M+1 power to find E(® 1) for all values of L.

’ ’
112 %2, M+

82

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

FT979SACSRI382: Z..n AL

i{3CI iaY 3
Substitution of o and 8 into e and e gives

ib + k A8 L sin Y)CI i(-k A8 M cos y)CI
e =e . ’ e ’

¥, i@ -kA8 Leosy)Y; i(-kAOM sinvy)Yy
e =e (5] .

These expressions can also be factored into terms involving only the index L or M,
and thus the diffraction pattern can be computed by complex multiplication.

5.3.2 Reverse order of integration

When it is necessary to reverse the order of integration over the variables, the
problem is reformulated, as shown in Figure 45. The solution proceeds as before,
except that the roles of y and z and those of a and B are interchanged. The formulas
summarized in the previous section and the results derived therein can be converted
to the present case by making those substitutions plus, when a and g do not appear
explicitly, the followings: ‘

LM
M—L ,
Y=y -
y _
//
//
// y=C2+322
-
Cl—m—
__L—7 y=ci+s2
C\ I | |
' |
| 1 Z
Z, Z,

Figure 45. Trapezoid aperture, reverse order of integration.

83

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

YSAGSR. 382 J o AT

rt

5.4 Diffraction Integral for an Arbitrary Shape

For an érbitrary shape, we can calculate the diffraction integral by letting the
field u’ be given by equation (5-8) over a plane surface bounded by a curve z 1(y) on
the bottom and z, (y) on the top (seg Figure 46). The Fraunhofer equation is integrable
along any line in the plane, as the phase of u’ is linear over the region. Since the
integration limits are not linear, integration over the second variable cannot, in

general, be done, although numerical integration can be used.

Figure 46. Aperture of arbitrary shape.
We get the following integral over the area by use of the modified Fraunhofer

equation:

Y Zo(Y) .
2 Z . . -ik(yO, + z0.)
E(@©,,0,) = f el@ +b2) b2 v dg

Y=Y, z=2,(y)

F2 220 @ -ke)y+ b - ke,)z]
= j I e dy dz .
y

=Y, z=24(y)

84

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

YSAGSR. 382 J o AT

rt

Using o and g as defined previously [eq. (5-9)], we get

‘ Y,  z,(0
E(,B) = f ¢! * P2) 4y 4y
y: Z=Z
p+0,
Y S )
2 | iy +Bzy(0)]  ilay + Bz;(y)]
E(@,pB)= f B e -e dy . (5-18)
y= 1

The integral consists of two terms, both of the form

Yo 1 ilay + ﬁzI(y)]
B e dy ,
y=x,

where I is either 1 or 2. The integral can thus be represented approximately by

Y .

2 ilay + Bz,(y)] i(aY, +BZ..)

[0 g Ty
y=Y,

The diffraction pattern will be computed at equal intervals A8 of the angles e'l and eé.
The quantity aYJ + [3ZIJ is the same as PIJ as given in equation (5-16). Substituting
equation (5-17) for aYJ + ﬁZU into equation (5-19), we get

2%

1(aY + BZ i(U;; + LV.. + MW

) )
1J’ _ 1 IJ 1J I
DL

d

85

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

which, in turn, can be substituted into equation (5-18) to give

. ./ iv. A\ iw, M .. /iv. \Bl/ iw, M
B =l Z{{%e 2J<e 2J> ](e 2J> _{%e 1 <e m)}(e 1J> }Ay
5}

(5-20)

Equation (5-20) can be factored into terms containing only L or only M. The compu-
tation time can be reduced by precomputing and saving the factors, so that each value
of ELM can be determined by complex multiplication.
o iUIJ< iVIJ> ( iWIJ>M .
The quantities e e and \e each consist of 2mn terms, where
2 is the range of I, m is the range of J, and n is the range of L and M. The powers

W
of e 'Y do not need to be stored simultaneously. The values of Ep,, for the first

.W M
value of M can be computed for all L and then the quantities <e1 IJ) can be raised

to the M+ 1 power to find EL, M+l for all L.
If B =0,
Yo 200
E(,0) = f e!@) gy a2
Y=Y, =z,()
Y, )
= [ T iy - 2 o
y=Y,
icx.YJ ’
=D e Ty-zpay
J

After incorporating equation (5-15a), we get

ifla -k AB (L cos y + M sin Y)]YJ
ELM=Ze Zoy - 219 &Y
d
iUJ ( iVJ>L( iWJ>M
= E e e e (Z2J—ZlJ)Ay ,

J
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where

=-kAOY_ cosy ,

=-kA0Y, . siny .

iUy [ ivy W 5
The quantities e e , € ,and ZIJ should be precomputed and saved. Those
iwy D iW 5

for \e are computed by multiplying each successive power by e

next higher power.

to obtain the

fa=p=0,
Y, z,0)
Be,p= [ [ axay=) @, -z
y=Y1 z=zl(y) J

5.5 Diffraction Pattern of a Cube Corner

From the modified Fraunhofer integral [eq. (5-4)], the complex polarization
state E"(el, 8,) in the far field of a cube corner is

' i(fay + b.z) -ik (y8, + z6,)
= 12:A a1 I 1 2
E'(el, 92) = —S' EI fje e dy dz 9 (5_21)
I s ’
I

where E, is the polarization vector for the I"" sector, s; is the area of the it sector,

and a and bI are the phase gradients in the y and z directions, respectively, due to

dihedral-angle offsets for the Ith sector. The intensity of each component of polari-

zation is

*
F(81,05) = E{(0),09) EL7(0),0,)

*
F;(el, 92) = E;(ely 62) Elz (91) 62) ’
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and the total intensity is

F'(01509) = Fy(01,05) + F/0),05) -

9)

The amplitude A of the reflected field in a polarization state given by the com-
plex unit vector P is obtamed by taking the dot product of P and E’
—

A =DP.E=p" E’+P E! .
P vy

The field f]’p having the polarization P is

B =AP ,
p p

and its intensity Ip is

The method of computing the six polarization vectors E. was given in Section 4.4,

I
and the phase gradients 2 and bI were computed in Section 2.11.3. The angular
boundaries of the six sectors and the order of reflection corresponding to each were
given in Section 2. 12. The active reflecting area S at normal incidence and the

integration limits for each section s, will depend on the shape of the front face.

I .
The integration for the polygon can be done analytically since the integration limits

are linear. The circular reflector requires numerical integration over one variable.
5.5.1 Diffraction pattern of triangular and hexagonal retroreflectors

The previous section gave the diffraction integral for a cube corner. Now we
need to determine the integration limits for each section S and for the total active
reflecting area S at normal incidence. For both triangular and hexagonal cube

corners, the active area at normal incidence is a hexagon of area V3 w2/ 2, where W
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is the width across flats. The following subsections describe how to set up the
integration limits and perform the integration over each of the six sectors. Since
each section is a polygon, the region of integration is defined by giving the vertices
of the polygon. The coordinates of the vertices of the total active reflecting area
are given in Sections 5.5.1.1 and 5.5.1.2.

If the phase and amplitude of the reflected beam are constant over the face of the
cube corner, the retroreflector acts like a simple aperture. The methods described
in Smith and Marsh (1974) are applicable in this case.

Julian, Hieser, and Magill (1970) compared measured and computed diffraction
patterns of hexagonal cube corners. The an:;.lysis includes the effects of dihedral-
angle offsets and polarization changes at the reflecting faces. The technique is
completely analytical and can be applied to any cube corner whose face is cut in the
shape of a regular polygon. A circular face can be adequately approximated by a
regular polygon with a large number of sides.

5.5. 1.1 Vertices of the active reflecting area for a triangular retroreflector

In Section 3.2, the active reflecting area was computed for a triangular retrore-
flector. Here, we compute the coordinates of the vertices of the active reflecting area
for use in calculating the diffraction pattern of the cube corner. Much of the infor-
mation needed to locate the vertices was provided in Section 3. 2.

Referring to Figure 28 for Case 1 in Section 3.2, let y, z coordinate axes be set
up as shown in Figure 47. Three of the vertices are numbered counterclockwise;
the positions of the other three can be computed by symmetry from the positions of
the first three (see Section 2.3). By using the distances calculated for Case 1, the
coordinates of the three vertices numbered in the diagram are

WV _sw

V=W =5,
__ae  —

zl— 5 + fe
=--%(%+Dcose)+Dsine ’
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Figure 47. Triangular retroreflector (6 > 0°), Case 1.

_y - 3W
yz-yl" 2 )

T TEo . B
zy=a ad + k—2+b
=—\/-!-§—(‘—g-+Dcose)+Dsine ’
y3=cd+a1
W 1 .
=?+Dcose+-§(W—Dcose+w/'3_Dsm9)

=W+—2Qcose+x/’§gsine

—W+—(Dcos6+w/'_Ds1n6) s

(W+2Dcose)+ \/,_(W D cos 8 + V3D sin )

-L\/._(ZW+Dcos6+x/'_Dsm6) .
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The above formulas apply to the range 0° < 6 < 60°. Since the physical situation
repeats every 120°, all cases can be covered by adding formulas for the range
-60° < 6 < 0°. In Figure 48, three of the vertices are numbered for the case 6 < 0°.
This figure is the same as Figure 47, reversed from top to bottom; thus, we can
obtain the coordinates of the vertices for the case -60° < 6 < 0° by computing the
coordinates for |6| and then reversing both the order of the points and the sign of the
z coordinates. Since only sin 6 is affected by a change of sign in 6, the expressions

for the case -60° < 8 < 0° can be written
yl=W+% (D cos 6 + V3D |sinB]) ,

1 .
= e — 2 + D + i
z Ve (2W cos 6 + V3D [sin 6])

1 b
_ 3w
Y27
1 /W .
zz=—ﬁ<7+Dcose>—D[sm8[ ,
_ 3w
V3=
1w .
z3—ﬁ<2+Dcose>—D]s1nel

I

Figure 48. Triangular retroreflector (6 < 0°), Case 1.
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Case 2 is given in Figure 49 with coordinate axes drawn and two of the vertices
numbered. The distances needed were given in Figures 27 and 28 for normal incidence

and Case 1 in Section 3.2. The coordinates of the points are

W 3W
V1= tWEg o
, =YW
17 2 ’
y2=5_=-‘g—+Dcos6 ,
l — 1 (W
=—cd=—= |5 +DcosB) .
T (Y pand
Y4

rd

Figure 49. Triangular retroreflector (6 > 0°), Case 2.

The above formulas apply to the range 0° < 6 < 60°, while Figure 50 shows the

case -60° < 0 < 0°. The coordinates of these vertices are
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3w
2, 2 ?
y = Y3W
2 2
¥4

e

Figure 50. Triangular retroreflector (8 < 0°), Case 2.

From Figure 27, we see that the coordinates of the center of the active reflecting
area at normal incidence are y = W, z = 0, while for other incidence angles (see
Figure 28), the right-hand triangle is displaced by Ay = D cos 6, Az = D sin 6 and the
center of the active reflecting area is displaced by Ay/2, Az/2. Therefore, the

coordinates of the center of the active reflecting area are

y W+5Dcosb6 ,

\V]

c

N
Il

Dsin6e ,

(@]
Do —
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and those of the vertices with respect to this center are

= - 5-22a
Yi= ¥~ Y ( )
zl=z, -z . (5-22b)
i "1 e

Figure 51 shows the y”, z” axes, where the z” axis is perpendicular to the plane

of incidence. The coordinates of these vertices are

n — ’ ’ 3 '
yi =yjcos6 +zisin0® , (5-23a)
z§'= -y{ sin® + z{ cos B . (5-23Db)
z/
Z//
/
y /
6
y/

Figure 51. Relationship between y;z’ and y”, z” axes.

Equations (5-22) and (5-23) are in a form that can easily be used in a computer pro-
gram. The algebra, though, is somewhat tedious: First we have to substitute the ex-
pressions for Y % to obtain yi’ s z{ and then substitute y{ , zi’ to obtain y{’, z{’. We have em-

ployed an algebra program to perform the substitutions, and the results are given below.

Case 1
_w |sine| .2 1 cos e[sine[>
yl— 5 <cose——rT>+D<s1n 9-5- 73

2
_ W (.. cos 6 : cos 6
2= -3 (lsm9|+ \f§>+D<cose|s1nel- 73 >,
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%:%(—L——lsme + cos e>+D<Sm2e__21_+___[cose|sme> ,

V3 V3

2
22=22V_<g)_sﬁ._ Isine|> +D<cos9|sin9|+—c-gs—9> ,

V3 V3
|sine 2D .
=W + — cos 0 {sin 6
V3 5 s cosolsmel

z =W°°Se+-2-9<l-sin29>

Case 2

W 3 D
V=% (/3|sin 6] + cos 0) -5

zl=%(w/'3_cos o - |sine) ,
y2=%<|si\r/1_;| _ cos e) +D<—é—-— sinz g 4 COs egin 6l> ,

2
w : cos 0 cos 0O :
Zy =5 <|sme|+ \/,g>+D<——\/,3_——cosels1neD .

These equations are for the range 0° < 8 < 60°. The absolute-value signs on
sin 6 make it possible to use the same expressions for the range -60° < 6 < 0° by
reversing the order of the points as well as the sign of z;. All y coordinates must
be multiplied by cos ¢ to get the coordinate of each vertex parallel to the plane of

incidence on a plane perpendicular to the line of sight.
5.5.1.2 Vertices of the active reflecting area for a hexagonal retroreflector
In this section, the coordinates of the vertices of the active reflecting area are

computed for use in calculating the diffraction pattern of a hexagonal cube corner.

Distances calculated in Section 3.3 are used in the derivation.
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Referring to Figure 32 for Case 1 in Section 3. 3, let the y, z coordinate axes be
set up as shown in Figure 52. Only three of the vertices are numbered; the positions
of the other three can be computed by symmetry (see Section 2.3). By using the dis-
tances calculated for Case 1, the coordinates of the numbered vertices are

1] — — -
y1=-§ag+g1+fc
=_l._“L+-W_+_]2_ ine
28 V8 TV °
=fgiv+—%sme ’
A v
zl——2+bc
=—%+Dsin6 ’
- 2W
Y2'\/’3— b
Zg=0 ,
1= —
Y3—§ag+g1
. A
2Vy3 V3
V3w
===
7 =W
3 2

N

N
"/

Figure 52. Hexagonal retroreflector (6 > 0°), Case 1.
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These formulas apply to the range 0° < 6 < 30°. Since the geometry repeats
every 60°, all cases can be covered by adding formulas for the range -30° <6 < 0°.
In Figure 53, three of the vertices are numbered for the case 6 < 0°. Figure 53 is
the same as the one for 6 > 0°, reversed from top to bottom. The coordinates of the
vertices are obtained by computing the coordinates with |6] in the formulas for 6 > 0°
and then reversing the order of the points and the sign of the z coordinates. Since
only sin 0 is affected by the sign of 6, the coordinates of the vertices for the range
-30° < 6 < 0° can be written

_V3W
Y1772 o
2. = -W
1 2
2w
yZ—\/'?)‘ b
zé=0 ,
_V3w . D
37 "9 +7§'| ol ,
W .
ZS=-2—-—Dls1n9|

\3

\ 1

Figure 53. Hexagonal retroreflector (6 < 0°), Case 1.
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Figure 54 shows Case 2 with coordinate axes drawn and two of the vertices
numbered. Using the distances from Figures 31 and 33 in Section 3.3, we get the
following coordinates of the points:

_ 2w
yl—\/'?)— ’
zl=0 ’

1 —
y2='fc'+§bk

- 11 | :
—Dcose+'§7§(2W—x/'3_Dcose—Dsme)

z2=b_c'+jﬁ

=Dsin0+5 (2W - V3D cos 6 - D sin 6) .

A

Figure 54. Hexagonal retroreflector (8 > 0°), Case 2.

These formulas apply to the range 0° < 6 < 30°. For the range -30° < 0 < 0°, the
coordinates of the vertices (see Figure 55) are
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11 .
y;=Dcos 8 + EH(ZW—V'??Dcose—Dlsmel) ,

z,=-Dlsin6| -+ @W - V3D cos 6 - D [sin6|) ,
_2w

yz 73

ZZ=0 .

Figure 55. Hexagonal retroreflector (6 < 0°), Case 2.

Figure 31 in Section 3.3 gave y = W/V3, z= 0 as the coordinates of the center of
the active reflecting area at normal incidence. At other incidence angles, the right-
hand hexagon is displaced by Ay = D cos 6, 4z = D sin 6, and the center of the active
reflecting area, by Ay/2, Az/2. Therefore, the coordinates of the active reflecting

area are

yC=XV—+-chose s

732

_ 1 .
zc—zDsme ,
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and the coordinates of the vertices with respect to the center of the active reflecting
area are given by equations (5-22). The transformation to y”, z” coordinates with

the z” axis perpendicular to the plane of incidence is shown in equations (5-23).

Using an algebra program for the substitutions, we get the following expressions
for y{’ and z’i’:

Case 1

LA i 2 1. cos6lsing
Y1=?<\/§ ']smel> +D<sm el-§+%ml> ,

. . 2
z =_%<|Sme|+c0se>+D<cose|sine|—sm e) ,

1 V3 V3
Yzzwcj—;e 'g ’
zz——Wls\i/%e| ’
Vg %Qsine|+03§§e>-—2]2 ,
z3=%<cose _l_s;\l}l:l_sre_l> .
Case 2
y1=W°3%e-22 )
zl=—W si}lg@ ,

cos 0 Isin el

\/’BT 2

2
_ sin® 6 V3
zz—Wcos9+2D<\/_3_ —4> .

y2=Wlsine| - 2D
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These equations are for the range 0° <6 < 30°. Because of the absolute~-value
signs on sin 6, we can use the same expressions for the range -30° < 6 < 0° by
reversing the order of the points and the sign of z;. All y coordinates must be multi-
plied by cos ¢ to obtain the coordinate of each vertex parallel to the plane of incidence
on a plane perpendicular to the line of sight.

5.5.1.3 Vertices of a sector

The vectors KI dividing the active reflecting area of a cube corner into six sec-
tors were computed in Section 2. 12. Let VyJ and VZ 7 be the coordinates of the
vertices of the active reflecting area on a plane perpendicular to the line of sight.

The angles Vi to each vertex are

Vv
-1 "zJ
vJ=tan AR
yd

and the angles of the boundary lines are

A

-1 "zl
=tan = ——
A1 A
The vertices within a sector whose boundary lines have the angles 2y and a;,, are

those for which

a'ISVJS"”'IH

In addition, the vertices of a sector include the origin and the intersections of the
two boundary lines with the sides of the active reflecting area. The intersections
are computed by means of the method described in Section 5.5.1.4. Figure 56 gives

an example of a sector with the vertices numbered.
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Figure 56. Vertices of a sector.
5.5.1.4 Intersection of two line segments

We give herein a systematic method of testing for singularities in computing the
intersection of a sector boundary and a side of the active reflecting area. The sector
boundary is a line starting at the origin (y = z = 0) and extending to one of the sides.
Zp- Let
Yy 2y and Yo 2, be the ends of the side that is intersected by the boundary (Figure 57).

Let the other end of the sector boundary be given by the coordinates y "

. ' (Yp, 2,)

(Yps 2p)
(y3, 23)

(yl, z))

Figure 57. Intersection of two line segments.
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Let

Ay =Yg =¥1 > (5-24a)

Az=z, -2, . (5-24b)

y
s, = A
ZA P)
S =éy
B Az

The equation of the sector boundary is
z=8,y , (5-25)
and that of the intersecting side is

z=C+ SBy ) (5-26)

where

C=zl—SBy1 .

If there are no singularities, the intersection Vg 2 is obtained by solving equations

3
(5-25) and (5-26) simultaneously. Substituting the former into the latter, we get

SAy =C + SBy

The Vg coordinate of the intersection is

103

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

I'I_

o=l
3 SA-SB

By substituting Y3 into'equation (5-25), the other coordinate of the intersection is

Zg= 8,¥g

After equations (5-24) have been computed, we can apply the following outline as a
sequence for performing the computations and testing for singularities and error
conditions:

A. Ify, #0, compute S, = zA/yA.

1. Ifyl #Yo) compute

Sp= Az/ay

C=z1—Syl .

a. If SB # SA’ compute

Y3=C/(SA'SB) ’
z3= SAy3 .

b. If SB = the lines do not intersect.

SA’

2. Ify1= Yos then
V3= Y=Yy
23 = Sp¥3

B. IfyA= 0, theny3= 0.

1. I.fyl # Yy, compute

104

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

YSAGSR. 382 J o AT

I'I_

2. Hy;=7Yy ‘the lines do not intersect.

5.5.1.5 Integration limits for a sector

letY J and Z J be the coordinates of the vertices defining one of the sectors of a
retroreflector. The diffraction integral must be performed over the surface enclosed
by connecting successive vertices by straight lines. Let the first and last vertices
be the origin of coordinates and let the other i)omts be given counterclockwise around
the sector. The diffraction integral is done for each successive pair of points using
equations (5-14) from Section 5.3. The integration limits for each pair of points

indexed J and J+1 are

YJ C+8Sy
LI

YJ+l z=0

where

Iy the integral is omitted for that pair of points.

3= Yo
5.5.2 Diffraction pattern of a circular reflector
Section 5.5 discussed the diffraction integral for a cube corner, except for how

to determine the integration limits for each sector S and the total active reflecting

area S at normal incidence. For a circular face with radius r, we have S= rrrz.
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The integration is partly analytical, based on formulas (5-14), and partly numerical,
based on Section 5.4. The numerical integration is done with a second-order technique
(Section 5. 5. 2.7), with Section 5. 5. 2.6 showing which parts of the integration are
numerical. To obtain the best results, it is sometimes necessary to reverse the
order of integration over the variables (Section 5.5.2.5). Formulas for the z values
at each numerical-integration point are given in Section 5.5. 2.2, and the end points

of the section of the ellipse bounding a sector are computed in Section 5.5.2.3. The
Airy formula, which is useful for checking the more general methods in the special

case of the Airy pattern, is given in Section 5. 5. 2. 1.

Chang, Currie, and Alley (1971) present an analytical solution for the far-field
diffraction pattern of a circular cube corner at normal incidence. Polarization
effects are included, based on results from Peck (1972). The diffraction integral

for each sextant is evaluated according to the methods of Mahan, Bitterli, and Cannon
(1964).

5.5.2.1 Airy pattern

If the field u is constant across a circular aperture, the diffraction pattern is a
function only of the angle 6 from the center of the pattern. The intensity I is given
by

2
I=1,G°

where I is the intensity at the center of the pattern and

0

2J . (ndOA)
G=—1
wd6 ?

in which J 1 is the Bessel function of the first order and d is the diameter of the
aperture. This formula is useful both for testing the numerical-integration techniques
to make sure that they give the correct answer for this special case and for determin-

ing the accuracy of the numerical integration for various integration intervals.
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5.5.2.2 Ellipse geometry

The active reflecting area of a circular retroreflector consists of the intersec-
tion of two circles as viewed in the plane of the front face (Figure 58) and two
ellipses as viewed from the direction of the incident beam. The separation of the two

circles is 2c¢, given by

2¢c=2Ltan¢’

c=Ltan ¢’ ,

where L is the length of the cube corner and -

n

o = sin_l <sin §>

Figure 58. Intersection of input and output apertures for a circular reflector.
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When viewed from the direction of the incident beam, distances in the y’ direction

are contracted by a factor a, where
a=cos¢ .

The equation of the circle in Figure 59a is

2

(y’-c)2+z'2=r

The equation of the ellipse in Figure 59 is obtained by substituting y’ = y/a and
z’ = z, resulting in

(Eoo) s =i .

To integrate the diffraction pattern numerically, we must have values of z at equal
intervals in y. Solving for z, we get

z=+ Vrz -(% - 0)2 ’ (5-27)

where the plus sign gives the values at the top of the ellipse and the minus sign gives
those at the bottom. Equation (5-27) is used for the left half of the aperture (y < 0).

For the right half, the ellipse is centered at y = -ac, and the formula is

2
E o) +l=r
a

a) b)

Figure 59. Ellipse geometry.
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which can be solved for z to give

z=+ Vr2-<§+ c)z .

Integrating first over z and then numerically over y does not give good results
when the slope of the ellipse goes to infinity. As seen in Figure 60, the sector can be
better integrated first in y and then in z. The triangular section remaining in
Figure 60a can be integrated analytically. We need to express y as a function of z

in order to perform the numerical integration in the variable z.

a) : b)

Figure 60. a) Normal order of integration; b) reverse order of integration.

Solving the equation
2
Yy 2_ .2
(a T c) + z b

for y, we have

y= a<ic:F Vrz - z2> )
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where the upper signs refer to the left ellipse and the lower signs, to the right

ellipse.
5.5.2.3 Intersection of a line and an ellipse

The active reflecting area of a circular retroreflector is divided into six sectors
by the projection of the back edges onto the front face. In general, the diffraction
integral must be done over each sector separately, since dihedral-angle offsets and
polarization effects result in the field u being different in different sectors. Let the
boundary line between two sectors be given by

where S is the slope of the line (Figure 61). The intersection is given by the solution
of the two equations

Lro) +22= o

z=S8y .

Substituting z2 = Szy2 into the first equation gives
5 .
(Lxacy, Py2= 2
a
y2 F 2acy + azc2 + a‘?'Szy2 = azrz

b

(1+ azsz) y2 T (2ac)y + a2(02 - r2) =0 ,

+2ac ;‘/421202 -4(1+ azsz) az(c2 - r2)

y:
2(1+ aZSZ)

[eq. cont. on next page]

110

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

3 2 2.2

+ 2ac F2a ‘/cz-(c2+azszcz—r2-ra S)

2(1+ aZSZ)

i:c:p‘/r2+azsz(r2-cz)

=a .
1+a2s2

Figure 61. Intersection of a line and an ellipse.
In cases where the boundary of a sector is vertical, the y component of the vector

defining the boundary line is zero and the slope S is infinite. In this case, the z coor-

dinate of the intersection of the line and the ellipse is computed by
2 1y . 2 R
=t r—(aic) l =+ Yr*-¢° .
y=0

The sign of the square root is chosen to be the same as that of the z component of the
vector defining the boundary line.

5.5.2.4 Slope of an ellipse

The active reflecting area of a circular retroreflector is bounded by two ellipses,

whose equation is
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2
(X3F0> 2= .
a
The slope is given by differentiating
2
z2 = 1"‘2 - <§ F C)
to give

2z dz = —%(%q: c)dy s

dz_ _(/a)zc
dy az

If z= 0, the slope is infinite. The value of the slope will be used in determining the

best order of integration in order to obtain accurate numerical results.
5.5.2.5 Order of integration over y and z variables

The active reflecting area of a circular cube corner is divided into six sectors,
each of which is bounded by two lines and one or two curves that are sections of an
ellipse. The numerical integration used to calculate the diffraction pattern gives
poor results when the slope of the curve as a function of the numerical-integration
variable becomes very large or infinite. The problem can be avoided by integrating
numerically over the other variable. A sector may be wholly contained in one
quadrant of the coordinate system or may span two quadrants. If the latter situation
occurs, the numerical integration is performed over the variable that changes sign
over the sector. If the sector is in only one quadrant, the order of integration of the
variables is chosen such that the maximum slope as a function of the numerical-
integration variable is minimized. Since the slope is a monotonic function over a
single quadrant, it can be computed at the ends of the elliptical arc as a function of
both integration variables, and the variable having the smallest slopes (absolute
magnitude) can be chosen.
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5.5.2.6 Numerical and analytical parts of sector integration

If the boundary lines of a sector have slopes of the same sign, the integral can
be broken into an analytical part bounded by straight lines and a numerical part bounded
by two lines and a section of ar ellipse, as shown in Figure 62a. If one of the sector
boundaries is vertical, the integration is wholly numerical, as shown in Figure 62b.
If the slopes are of different sign, the integration is numerical, and the curve has
sections of two different ellipses if y changes sign over the sector (Figure 62c) or a
single ellipse if z changes sign (Figure 62d). For Figures 62c and 62d, the numerical
integration must be split into two sections, one for each of the boundary lines. The

numerical integration is over the z variable in Figure 62d.

z a) b)

M ‘H
y

c) 4 d)

? y

Figure 62. Analytical and numerical parts of sector integration.

N
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5.5.2.7 Second-order numerical integration

The numerical part of the diffraction integral for a circular cube corner is done
by means of a second-order technique. The interval is divided into equal pieces of
length &, and the value of the integrand f(y) is computed at each point to obtain a set
of values fi' Fach set of three points is fitted with a quadratic, which can be integrated
analytically. The result of the integration is Simpson's rule (Hildebrand, 1956, p. 73):

Y3

&
J f(y) dy = 3 (f1 + 4f2 + f3) .
Y1

5.6 Symmetry of Cube-Corner Diffraction Patterns

The far-field diffraction pattern of a retroreflector is calculated by equation
(5-21). Under certain conditions, the diffraction pattern has symmetry properties
that are helpful in checking the accuracy of a diffraction calculation. If a retroreflector
has perfect-metal reflecting faces, the polarization —EI of the reflected light is the

same for all six sectors of the cube corner. In this case, the diffraction pattern has

the symmetry property
E@® 1 62) = E(-8 1° "'92) ’ (5-28)

which can be shown as follows. A ray incident at the point (-y, -z) in sector I’
emerges from the point (y, z) in the opposite sector I with a phase change a;y + bI zZ
due to dihedral-angle offsets. A ray incident at point (y, z) emerges from point
(-y, -z) with a phase gradient

ap,(-¥) + by, (-2) = (-ap)(-y) + (-bp(-2)

=ay+bIz .

I
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We have ap = -2; and bI’ = -bI because the rays travel virtually the same path in
opposite directions for the I and the I’ sectors. The diffraction integral is the sum
of pairs of points of the form

i(aIy + bIz) —ik(ely + ezz) i(a.Iy + bIz) -ik(-6 Y- ezz)
e e + e e

i(a,y + by2)
P

cos k(ely + ezz) .

Since the cosine function is symmetric with respect to a change in sign of the argument
and since the diffraction integral is the sum of such symmetric terms, the diffraction
pattern has the property given in equation (5-28).

Another symmetry property can be seen from the same argument. If all the
dihedral-angle offsets are reversed in sign, the constants a and b change sign so that
the integral is the sum of terms of the form

il(-apy + (-bpz] -iay + bp2)
e 2 cos k(ely + Gzz) =e 2 cos k(ely + ezz) .

Since the intensity is obtained by multiplying the integral by its complex conjugate,
the diffraction pattern is unchanged when the sign of the dihedral-angle offsets is

reversed.
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6. RAYLEIGH DISTRIBUTION

The return signal from a satellite retroreflector array consists of reflections
from a large number of cube corners. Since the laser beam is coherent and each
reflection has a different phase, the reflections will interfere with each other. For
a large number n of reflections each having unit amplitude, the normalized probability
that the resultant amplitude will be A is (Rayleigh, 1945, pp. 35-42)

—Az/n

P(A)dA=§e AdA .

Since the erergy E of the return signal is proportional to the square of the amplitude,
the probability of a given energy is obtained by substituting

E= A2 ,
dE = 2A dA
into the above equation to give

P(E)dE=-Ille"E/ndE .

The mean energy E is given by -

[> o]
- E e..E/n ' _J _ e-E/n [eq. cont. on next page]
0

117

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

=0- (ne—E/n> jo

-(0-n)=n .

6.1 Factors Modifying the Rayleigh Distribution

Three factors that exist in actual retroreflector arrays make the probability
distribution of the return energy somewhat different from the Rayleigh distribution:

A. The number of reflectors is finite.
B. The amplitudes of the reflections from individual reflectors may not be equal.

C. The transmitted pulse is of finite length, and thus the envelopes of individual
reflections do not coincide exactly.

6.2 Guidelines for the Application of the Rayleigh Distribution

The following guidelines can be used to determine when the Rayleigh distribution
is not appropriate:

A. The probability distribution for the resultant amplitude of a finite number
of equal phasors (Slack, 1946; Jaffe, 1971) is quite different when N is 2, 3, or 4.
For N = 5, the probability of E = 0 is about 15% lower than for the Rayleigh distri-
bution. At N = 10, the difference is only about 5%. Therefore, anything over about
N = 10 can be expected to give néarly a Rayleigh distribution.

B. If the amplitudes of the phasors are uniequal, the probability distribution will
still be a Rayleigh distribution as long as there is a large number of phasors of each
amplitude (Rayleigh, 1945). Any number greater than about 10 is considered large
for this purpose.

C. As long as the pulse length is long compared to the separation of the retro-
reflectors, the Rayleigh distribution will be applicable.
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7. ARRAY TRANSFER FUNCTION

7.1 Retroreflector-Array Coordinate System

The coordinates of the center of the front face of each cube corner in an array
are given in a system whose origin is at the center of mass of the satellite in the
orbital configuration. If the array has a symmetry axis, let it coincide with the z
axis. The direction of the x axis is chosen to be at some convenient angle in the
plane normal to the symmetry axis. Let an x’,y’, z’ coordinate system be set up
parallel to the x,y, z system with its origin at the center of the front face of a cube

corner (see Figure 63). The orientation of the cube corner is represented by the

Figure 63. Array coordinate system.

three angles 6 and aps the first two giving the direction of the normal to the

R, ¢R’
front face of the cube corner in the x’,y’, z’ system (see Figure 64).

To show the angle O let an X', Y’, Z’ coordinate system be set up with its origin
at the center of the front face, its X’ axis normal to the front face, Y’ in the direction

of increasing 6, and Z’ in the direction of decreasing d)R. The orientation angle a

R’ R
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Figure 64. Coordinate system for cube-corner orientation.

is measured counterclockwise from the Z’ axis to the projection of one of the back

edges of the cube corner onto the front face, as shown in Figure 65.
/

z

Figure 65. Cube-corner orientation angle AR
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7.2 Coordinate System of the Incident Beam and the Observer

Let the direction to the illuminating source be given by the angles 6, and ¢ S

, S
related to the x,y, z coordinate system of the array (Figure 66). Let the complex
vector E giving the polarization state of the incident beam be given in the x*, y*, z*
coordinate system, defined as follows. The x* axis points toward the source and the

y* and z* axes are in the direction of increasing 6, and decreasing bg respectively.

S
This is the coordinate system of the observer and is the one in which the diffraction

pattern of the array will be given.

z
Z* x*
y*
P |
|
I
|
|
t > y
~ | ///
~
w7

Figure 66. Coordinate system of an incident beam.

7.3 Coordinate System for the Diffraction Pattern of Cube Corners

The direction of the beam incident on a cube corner is specified by the two angles
® and 4, where ¢ is the angle between the normal to the front face and the incident
beam. The azimuth angle 6 is measured to the projection of the incident direction

onto the front face, as shown in Figure 67. The coordinate system in which the
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diffraction pattern of the cube corner is computed has its 1 axis pointing toward the
source, its 2 axis in the plane of incidence pointing in the direction of increasing ¢,

and its 8 axis perpendicular to the plane of incidence in the direction of increasing 6.

_
- 6

Figure 67. Projection of an incident beam onto the face of a cube corner.

7.4 Conversion between the Coordinate Systems of the Incident Beam and the Retro-
reflector

A A

Let S be the unit vector pointing toward the illuminating source and R be the unit
normal to the front face of a cube corner in the array. In the coordinate system of
the array, the components of the vectors are

S, = sin bg CcOs S RX= sin bg cos O

S ? R ?

Sy= sin ¢S sin es s Ry= sin ¢R sin GR ,

SZ = cos c[;s s Rz = cos ¢R

The incidence angle ¢ on the cube corner is given by
A A
cosd=S-+ R
To compute the azimuth angle 6 of the projection of the incident direction onto the

A
cube corner face, the vector S must be expressed in the X’,Y’, Z’ coordinate system,
in which the orientation angle aR is given. This is accomplished by rotating the
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A
coordinate system of S first about the z axis by the angle eR and then about the new

A
y axis by the angle ¢R (Figure 68). The components of the vector S in the rotated

-

coordinate system are

Sx” cos op 0 -sin R cos eR sin eR 0 SX
Sy" = 0 1 0 -sin GR cos OR 0 Sy .
Sz" sin ¢R 0 cos ¢R 0 0 1 SZ

Z

Figure 68. Direction of the normal to the cube-corner front face.

The relationship of the x”,y”,z"” coordinate system to that of X’,Y’,Z’ is given
A
in Figure 69. The components of the vector S in the X’,Y’, Z’ coordinate system
are

er = Szn )

and the projection of the incident beam direction onto the Y’Z’ plane makes an angle
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Figure 69. Relationship of X’,Y’,Z’ and x",y"”, z" axes.

Sg/

o’ =tan"’ <§z->
’

with the Y’ axis, as shown in Figure 70. The desired azimuth angle 6 is
=0’ Z/
9 - 9 - O.R .
v/

Figure 70. Diagram for computing the azimuth angle 6.

124

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

The complex vector E is in the x*, y*, z* coordinate system of Figure 66. The
diffraction pattern of a retroreflector is computed in the coordinate system defined
in Section 7.3. The two coordinate systems are therefore related by a rotation about
the x* axis through a rotation angle y, which can be computed by expressing the vec-
tor ﬁ in the x*,y*, z* coordinate system of the observer. This is done by rotating

the coordinate system of ﬁ about the z axis by the angle 6 , and then about the new y

S
A
axis by the angle ¢ S The components of R in the rotated system are then

RX,, cos ¢S 0 -sin ¢S cos OS sin GS 0 RX
Rz” sin ¢S 0 cos ¢S 0 0 1 .

Figure 71 gives the relationship of the x”,y”, z” coordinate system to that of x*, y*, z*,

The components of the vector ﬁ in the latter system are

Rx*_ z"” 2
R —

yx Ty" 2
RZ*= - x” J

Figure 71. Relationship of x”,y”, z” and x*, y*, z* axes.

125

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

YSAGSR. 382 J o AT

rt

and the projection of the normal to the front face of the cube corner onto the y*z* plane
makes an angle

R, x
y' = tan™t ('I'{E_>
y*

with the y* axis, as shown in Figure 72. The direction of the 2 axis in the y*z* plane
A
is opposite that from the projection of the vector R onto the y*z* plane (see Figure 73).

3 AXIS\

2 AXIS
~
),/ \ ~
R \ - Y
A *

= — R
*

Figure 72. Diagram for computing the angle v.
S A XT AXIS

R I AXIS °

|

l

|

| y*z2* PLANE
_ » — — — —

A
Figure 73. Relationship of the 2 axis to the unit vector R.
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The desired angle y as shown in Figure 72 is

y=vy' -7 .

Let Ey>'< and E_, be the complex components of the incident polarization vector in the

x*, y*, z* coordinate system. The components E2 and E, in the coordinate system

3
used for the diffraction pattern of the cube corner are then

E2=Ey*cosy+Ez*si.ny ’

E3 = -Ey* sin y + Ez* cos y
A point with the angular coordinates (Gi,eé) in the coordinate system for the diffrac-
tion pattern of the array has the following angular coordinates in the coordinate system

for the diffraction pattern of an individual cube corner:

91=6’lcosy+9é siny ,

’

- _0! i
62— 61 s1ny+ezcosy .

7.5 Transmitted Pulse

The transmitted pulse is assumed to be a monochromatic wave with a gaussian
envelope. The intensity across the retroreflector array is assumed to be uniform.
In the x*,y*, z* coordinate system, where the x* axis points from the array to the

source, the complex vector field incident on the array is

ik(x + ct) 1 - (x+ ct)2/4 o2

=N A A
E= (Eyy+ Ezz)e
oVv2m

H (7'1)

where k= 2m/\, \ is the wavelength, c is the velocity of light, and ¢ is the sigma of
the transmitted pulse. For simplicity, we have dropped the asterisks on x, y, and z.
The intensity I of the pulse is

127

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

2, 2
I= (E_E* + E_E¥) — o~ &+ c)7/20

yy ZZO\/—

If the width of the transmitted pulse is given as the distance ¢ between half-power points,
o is calculated from

-(1/2)2/202 _1
e T2

’

which can be solved to give

_(g)z_l_z 1
2 2 2 7
2 1
5 —=+In2
2 3o ’
oL 1 _ 2 __2/2 __ 4
2 SIm? +ind 1.17741 2.35482 °

7.6 Position of the Retroreflector along the Line of Sight

Let é be a unit vector pointing from the array toward the incident beam and E\be
the vector from the satellite center of mass to the center of the front face of a cube
corner. The position of the cube corner along the line of sight is

AN
S.-C

If we take the optical path length in the dielectric (Section 2.5) into account, the
apparent position of the cube corner along the line of sight is

AN
X=S-C—LVn2-sin2¢ ,
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where L is the length of the cube corner from the vertex to the face, n is the index of
- A
refraction of the cube corner, ¢ = cos 1 (/S\, - R), and x is the distance to the satellite

center of gravity minus the apparent distance to the cube corner.

7.7 Incoherent Return

The equations given in this section apply to situations in which the return signal
is independent of the phase relationships among the reflections from individual cube
corners. If the array is illuminated by an incoherent source containing many frequen-
cies, the phase relationships are different for each frequency, so that averaging
occurs over all possible phase relationships. The equations also apply to a laboratory
experiment in which the total reflected energy is measured. The return pulse is the
sum of the total reflected signals from each cube corner. The primary use of these
equations is to compute the average behavior of a large number of returns measured
at some point in the far-field pattern when the array is illuminated by a coherent
source. In this situation, it is assumed that the phase relationships vary randomly
from pulse to pulse as a result of changes in viewing angle to the array. The inco-
herent return is constructed by adding the intensities of the reflections from each cube
corner at a point in the far field. In Section 7.8, it will be shown that this gives the

average pulse shape of a large number of coherent returns.

The reflection from a cube corner has the same mathematical form as the inci-
dent pulse, except that the reflection is moving in the opposite direction. The dis-
placement between the pulses reflected from two different cube corners is twice the
difference in distance to the two reflectors. Let the return pulse be constructed in a
coordinate system having its origin at the center of the reflection that would be received
from a cube corner at the center of mass of the satellite. The positive direction will
be taken as the direction to the observer. In this coordinate system, the intensity I_K

th

of the reflection from the K cube corner is

S -(x-d?/20?
k=5 © ,
ov2m
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where dK is twice the distance of the apparent reflection point for the K)Ch retroreflector

from the plane through the center of mass of the satellite perpendicular to the incident
beam. The constant SK giving the intensity of the reflection from the Kth cube corner
is proportional to the active reflecting area, if the total reflected energy is being meas-
ured, or to the intensity of the diffraction pattern at the position of the observer, if the
detector is located at a point in the far field. Depending on the method of detection,

SK is either the total intensity (EyE* + EZE:) or the intensity of any component of

y
polarization being measured.

The total intensity I of the incoherent return is
Ix)= E IK
K

2 2
=Z SK e—(x-dK) /20
ov2m ’

and the total energy of the return is proportional to

[}

2 2
< "(X"dK) /20
_ 1
fI(X)dX— EKSKJ ow/'z—we dx

S8 -
K

The mean position of the return pulse is

[ x1) ax
x-
J’ I(x) dx
- e ~(x-d)° /207
ZSK J' (x/0VZT) e dx
=X e . (7-2)
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Substituting x’ + dK =%, X' =x- dK’ and dx’ = dx, we get

o o2/
EK:SK! [(x' + dy)/0VET Je x % 20" ax’

0O

X =

z ;S d
KK
S S (7-3)

A measure of the spreading of the pulse due to the array is obtained by computing

the second moment V of the return:

J‘oo *21(x) dx
V=2
J' I(x) dx

2 2
ZSKf (x2/0v2'rr)e K dx
K e
= . (1-4)

25

If we make the same substitutions for x, x-dp,

and dx, the integral becomes

o 2, 2 o 2
i 2 /20 fﬂe-x'z/zoz

dX’
V2w ovam
—00 -0
© 2 2 2 ® 2 2
x'"  -x""/20 x'  -x""/20
= ——e dx’ +2 ——e dx’
f ova2m dKf ovam
- 00 =00
[eq. cont. on next page]
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+ ——=e dax
dK fU\/Z‘n
=00
2 2

=gq +0+d.K .

After we substitute this into equation (7-4),

%SK (02+d12{)
V= .

Defining 0’ = VvV, we have

; S (0 +dZ)
e

o’ =

for dK « 0, the incoherent return is nearly gaussian, with a sigma of o’.

7.8 Coherent Return

The coherent return from an array is computed by adding the fields of the reflec-
tions from all the cube corners and squaring the sum to obtain the intensity. The
field of the transmitted pulse is given by equation (7-1). Let the return pulse be con-
structed in a coordinate system whose origin is the center of the pulse that would be
reflected from a cube corner at the center of mass of the satellite. Let dK be twice the
distance of the Kth cube corner from the plane through the center of mass of the satel-
lite perpendicular to the incident beam. The quantity dK is known with sufficient accu-
racy for use in positioning the envelope of the reflection from each cube corner. How-
ever, it is not known with enough precision to predict the relative phases among the
reflections. We will therefore assume that the relative phases are random and vary
randomly from pulse to pulse. Very small changes in aspect angle of the satellite are
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the Kth cube corner is

ke-dp) B - x-d?/a0”
€ -_— e

E.. =

K ov2m
. 2 2
| ikx 10, S - (x-dy) /40
=e e e .
ov2m )
where GK = —kdi{ = a random phase between 0 and 2.

The field of the whole array is

E=ZEK
K

and the total intensity is

. ) 2 2
e DL YA S, S
ov2m
K
. 2 2
-i0 S, -(x-dp)7/40

XE e—ikxe L e
T ov2T

=Zei(eK_eL)‘,SKSL ] _(x—dK)2+(x—dL)2
ovem P

5
KL 40
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Since EE™ is real, all imaginary terms cancel, resulting in

(7-95)

,/sKsL [_ (x-dK)z + (x-dL)z]

I(x =Z cos (0, -6,) ——— exp
() 2 O ~0p) = =

The mean value of cos O - eL) over a large number of coherent returns where the
phases vary randomly is 0 for K # L and 1 for K= L. Therefore, the mean return
pulse shape is

- (x-dK)z/Z(r2
Z Sk

o € ’ (7-6)
B .

which is the incoherent case derived previously.

In order to obtain the total energy by integration, the exponent can be transformed

into a perfect square plus a constant:
(x-dK)z + (x—dL)2= x2 - 2de + dlz{ + x2 - 2de + di
= 2x2 - 2x(dK+ dL) + (dlz{+ di)
=2 ‘:xz —x(dK+ dg) + <dK; dL>2 - (dK ; dL>2] + (d?{+ di)

dK+dL>2 1 2 /2 2
2<x— > —E(dK+dL)+(dK+dL>

I

I

2 2 o2 2 2
) dp+ dL\ di - 2d,dy - d7 + 2dy + 2d]
X-—5 /) * 3

2

2 2 2
( d+dp\”  di - 2dgdy +dp
X- +
2 / 2
dK+dL>2 1 2
=2<x-—z—‘ A S U
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Substituting this into equation (7-5), we get

: 2
I(x) = 6. -6 _(dK_dL)z/ 80 VSkSL [x-(dKJ’dL)/ 2]
(x)—gg cos (O -6p) e o P .

(7-7)

The total energy is proportional to

2, 2
* -(d,-d,) /80
jI(x)dx=§ cos (O - 0,) e kL N
Zeo KL

If we substitute equation (7-7) into the first line of equation (7-2), the mean position
of the return pulse, we have

[~¢]

- @ -dp)Y/80? - [x- @+ ap /2 /202

__ ={Zoxé‘cos Ok -61) e _ SKSL/oszT>e - o
-L 2 cos G-o) o e (\ESp/omw) o - rapfrae”
(7-8)
Incorporating the following substitutions
X'=x- dK; L ) (7-92)
. (7-9b)
o dK; : (7-9¢)

into equation (7-8), we have
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2, 2
-( -d;)“/80
Zcos(e dK L

2. Ny _L {f+ @+ apyr2)/ovem) X120

2
- (dy -d )/80 ,2 0 2
L ,/sKsLi (1/ovam) & X 1207 gyr

X=

Z cos (9 - OL) e

2 2
_(dK—dL) /80

_ g}; cos (eK-eL) e ‘ISKSL [(dK+dL)/2]
2,,.2
- (d ~dp) /80
cos (0,,-96 S

If we substitute equation (7-7) into the first line of equation (7-4), make the change of

variables given in equation (7-9a, b) plus

d_ +d
2 2 K "L
X=X Ty (dK+dL)+<——2—_> ’

and perform the integrations, the variance of the return pulse becomes

2 2
-(d,-d;)" /80
Z cos B -6y)e L VSk Sy, {02 + [(dK+dL)/2]2}

KL . (7-10)

, 2 2
-@d, -d.)°/8c
Z cos (eK-eL) e dK L \/SKSL
KL .

V=

The square root of the variance is

g’'=JV .

7.8.1 Calculation shortcuts

The expression for the coherent reflected intensity was given above as a sum
involving a double index. This form was necessary in order to obtain the total energy,
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mean position, and second moment of the reflected pulse. For plotting the intensity,
however, it is much more efficient to calculate the field involving a single index and

square the result. Omitting the factor eikx, which disappears when E is multiplied
by E*, we have

. 2, 2
ie /SK - (x-d,) /40
Z K K
Ex) ~ - e ome ’

from which the intensity is

Ix)= Ex) E*x) .

In computing the total energy, the mean, and the variance of a coherent return, the
following techniques can be employed to reduce computation time. The cosine factor
can be expanded to give

cos (GK—OL) = COos GK cos GL + sin eK sin 6

L

The terms on the right can be precomputed and saved, which requires 2N trigometric
calculations, where N is the number of retroreflectors. Each value of cos Ok - GL)
can then be computed with two multiplications and one addition, a much faster proce-

dure than doing N2 cosine calculations.

In all the expressions, the terms with index KL are equal to those with index LK,
so we need to compute only about half the terms. Since terms with K= L are indepen-
dent of the random phases used, their sum can be precomputed and saved when many
coherent returns are being calculated for the same incidence angle on the array. The
terms for K= L give the incoherent results.

7.8.2 Relation of coherence to diffraction

The calculation of coherent returns by use of a random-number generator to

assign phases to the reflections from individual cube corners is a way of gaining some
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statistical information despite the impossibility of knowing the actual phase relation-
ships between the reflections. A coherent calculation is actually a diffraction calcula-
tion for the whole array at one point in the far field, based on assumed phases. If we
have accurate enough information, we can perform the diffraction integral over the
whole array, calculating the phases from the relative positions of the reflectors in the
array. The characteristic width of the diffraction pattern of a single reflector is
roughly x/DR, where DR is the diameter of the cube corner. The basic physical
reason for this is that the phase relationship between the opposite sides of the cube
corner changes by 360° when the angular position of the observer changes by )‘/DR'
The phase relationship between reflectors on opposite sides of an array changes by
360° when the viewing angle changes by \/D x where D A is the diameter of the array.
Since D A is generally much larger than DR’ we can expect the diffraction pattern of
the whole array to vary within a characteristic angle \/D A? giving rise to a mottled
appearance in the array diffraction pattern. It is these variations that are being
studied statistically in a coherent calculation.

7.8.3 Coherent variations

Let X5 represent some property of the ith coherent return, such as the energy
or mean position, and let Wi be the weighting factor for the return. The mean value
of the quantity for a set of coherent returns is

il

—=_ i
x___—_ 9
Z:W.

— 1
i

and the variance of the quantity is

; W, (x, —i)z

A

V=

2 - =2
2; (Wixi - 2Wi>o<i+ Wix )

; Wi [eq. cont. on next page]
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In cases where the average value X of a coherent quantity is substantially different
from the incoherent value, the statistical significance of the differences Ax can be
measured by the quantity Ax/ O, Where

o= V¥
X N

N being the number of coherent returns.
7.8.4 Mean value of coherent quantities

It has already been pointed out that the mean value of the intensity, equation (7-5),
averaged over many coherent returns is the incoherent intensity shown in equation
(7-6). Since the total energy is the integral of the intensity, the mean value of the

coherent energies is the incoherent energy. This result is also obtained from the

expression

2,2
- (d -d;)"/80
energy=z cos (6K~—6L)e dK L VSKSL .
KL

Since the average value of cos (GK— BL) is 0 for K # L and 1 for K= L, the mean value

of the coherent energy is
energy = E SK ’
K

which is the incoherent expression.

The situation is a little more complicated for the other quantities. The mean
position of the return pulse is
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2, 2
-d,-d;)"/8c
w0 VS Sy, @ +dp)/2

' - (d - dp)*/80°
Z cos (GK -

0.)e S
& )¢ VS,

Zcos ©,,-6;) e
&1 K "L

x= ’ (7-11)

in which the mean value of the numerator is

E SKdK .

K

The denominator is the energy of the return that has a mean value of %: SK If it

were true that the mean value of the quotient of the two quantities is the quotient of

the mean values, then the mean value of X for the coherent returns would be the same
as the value of X for the incoherent return. Calculations of large numbers of coherent
returns for certain arrays have shown statistically significant differences between these
two values of X. The arrays used had unsymmetrical distributions of retroreflectors
along the line of sight. Presumably, if both the incident pulse and the distribution of
reflectors were symmetrical, there would be no mechanism for causing a bias.

A technique for removing the difference between the average X of the coherent
returns and the X for the incoherent case is to weight each coherent X by the energy
of the coherent return. This has the effect of canceling the denominator in equation
(7-11), so that we need to average only the numerator, whose mean value has already
been shown to be equal to the numerator in the incoherent expression for X, equation
(7-3). Computer runs on large samples of coherent returns have verified that this
weighting technique works to within the statistical uncertainty due to the number of
returns computed. These computer runs also show, however, that the whole sample
must be used; excluding returns below a certain energy causes a bias. This is
probably the result of the fact that a return's low energy puts constraints on the phases
such that they are no longer random.

A similar situation exists with the variance given by equation (7-10), whose mean
value of the numerator, % SK(cr2 + d12<), is the same as in the incoherent case; the
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denominator is the energy. Weighting by the mean energy removes any bias between

the mean coherent value and the incoherent value.

7.8.5 Coherent variations versus pulse length

Computation of coherent returns for various arrays with different pulse lengths
has shown that the variation of the mean position of the return pulse decreases as the
pulse length decreases. A qualitative explanation of this phenomenon is the following:
If the pulse length is much shorter than the spacing between the reflections from
different reflectors, no interference occurs between the different reflections, because
they do not overlap. In this case, the coherent return is identical to the incoherent
return, and all properties of the coherent return, such as the energy and mean posi-
tion, are constant. As the pulse length increases, both the degree of overlap between
individual reflections and the variations in pulse shape increase. Therefore, the
variations in energy, mean position, and other properties will increase as the pulse
length increases.

7.9 Half-Maximum Range Correction

In a half-maximum detection system, the range to a retroreflector array is meas-
ured by recording the time interval between the half-maximum points on the leading
edge of the transmitted and received pulses. If the received pulse is the same shape
as the transmitted pulse, this will give the same range as a centroid detection system.
However, if the pulse is broadened by the array, because of the fact that the cube
corners are distributed in range from the observer, then the range measured by a
half-maximum system will, in general, be shorter than that measured by a centroid
detection system. The difference between the half-maximum range correction and
the centroid range correction must be computed by plotting the return pulse and
numerically finding the point on the leading edge where the intensity is half the maxi-
mum intensity. In cases where the half-intensity point is multivalued, the first point

on the leading edge will be considered the half-maximum point x The difference

1/2°
between the half-maximum point and the centroid on the transmitted pulse is o0vInd ,
as shown in Section 7.5. The corresponding difference on the received pulse is

X1/9 -X, where X is the centroid of the received pulse. The difference between the

half-maximum and the centroid range corrections is
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-% [(xl/zv - X) —(NIn4] .
The factor of 1/2 converts the result to a one-way correction.

7.10 Pulse Spreading by Array versus Pulse Length

Computer runs on various retroreflector arrays with different pulse lengths
have shown that the amount of pulse spreading due to the array increases as the pulse
length decreases. There is one particular array geometry where this result can be
proved analytically. Let the array consist of a large number of reflectors whose
density along the line of sight is approximately gaussian. Let the density of reflectors
be

2 2
- 2x")" /20
Dhex") @ ax") = —— e Leaxn

olm

and let the intensity of the incoming pulse be

2 2
1 e_ (x+ ct) /20'0
0'0\/71'_1' )

Io(x) =

The contribution dI(x) to the incoherent return signal from an element of the array at
the point X” is a gaussian moving in the +x direction reflected from point x” at time

t = - x”/c and centered at 2x” at time t = 0. If we define x’ = 2x”, we getatt=10

-x’2/2cr2 - (x-x’)2/202
1 1., 0
olx/in oox/Z-rr

di(x) =

and then we can integrate over x’ to obtain the total incoherent intensity:
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(& o]
I(x)=J dI(x)
~c0
-1 1|x X -x’
T 2100 J NS 2 dx’
bod 91 %

The terms in the square brackets can be rewritten to form a perfect square plus a

constant, as follows:

x’2 +(x—x’)2=:_<f+x -2xx' + x’
2 2 2 2
1 0 1 %
2
2 /1 1 2x X
— ’ —_— — - I A Py ——
=X <02+ 2> X(z)* 2
1 Y% o/ %o
02+ 2 022x 2
21" % (2 1 o) X
o2 2 2, 2 2
1% 01% 0 %9
2 2
02+ 02 02x 02x 2
_ 1 0 <’ 1 1 +x
-T2 2 - 2] "\ 2 2 2
1% 01+ 0 01+0%/ ] 9y
o2 + g2 oo x ¢ o2 % x2(02+ 02)
_ 0370 Q{, > 1% 17 9%
-T2 2 T2 2] " 2,2 2 2,2 2
919 ol + 0y 0g(o7+ oy 00(01+00
N
,—
{x [olx/(ol+oo>]} . xz
02 02/(02 + 02) +0
190/917 9% 0179
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where

After we substitute this back into the exponent, the integral becomes

2
2,0 2 ® x' - (02%/0)
I(x)=-————l o X /20 f exp -L' 1 ]

2mo, 0, 2(0100/0)2

—co

2 2 0, 0.
—.__l_._ -X /20 r—__l__Q
" 2mo; 0, € 2T =5

2 2
__1 e—x/20 )

ov2m

The reflected pulse is a gaussian with o= v o% + (2) A measure of the amount

of pulse spreading is the difference

_ _ e 2 2 _
A0=0-0,= 01+0y =0y -
For very long incident pulses,
2 0? G?l
017 00= o4/t t 27 001t 3] >
00 200

so that
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Instead of having Ao on the order of ol, which we might have expected intuitively, the

~ spreading is reduced by the factor 01/200, so that A — 0 as 0') = -

For very short pulses,
02
2, 52= 9 0
01+ 0,=0; 1+ 5 = 0 \1+
9

and thus

"(2) %
Ag = 01+§5} -0,=0,+0, T‘l-

In the limit, as % -0, A0 ~0, -0, =0 aswe would expect for a point reflector.

By taking the derivative of Ao with respect to 0,y We can prove the statement made
at the beginning of this section for the special case of a gaussian distribution of retro-

reflectors. We have

Since GO/V 0% + og =1, d(Ao)/dor0 = 1, so that the pulse spreading increases as the
pulse length decreases.

7.11 Range Equation and Gain Function

The range equation giving the received energy as a function of the transmitted
energy can be written
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dE_/E
_ dE/E s'”s
Er= BTpTdag “s"staTaa r o

where Er is the received energy, E is the transmitted energy, T A is the atmospheric

transmission factor, Q is the solid angle subtended by the active reflecting area of

the satellite array, TS Sis the transmission factor of the array, ES is the energy
reflected by the satellite, and Qr is the solid angle subtended by the receiving telescope.
To calculate the number of photoelectrons, the equation must be divided by hv and
multiplied by & p» Where h is Planck's constant, v is the frequency of the laser, and

épr is the efficiency of the receiver in photoelectrons per photon.

The solid angles QS and Qr are
Q.= ﬁ§
S R ?
Ar
Qr = -R- 9

where As is the active reflecting area of the array, Ar is the area of the receiving

telescope, and R is the range. Introducing the definitions

dE/E
G, = —=t— |,
t~ dag
dE_/E
G. = S8

S dQ ?
T
we get the following equation for the number of photoelectrons N:

GA_GA

_E “f's’s’r 2
N=:= —a TATS&, . (7-12)
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This definition of the gain functions G, and G differs from standard usage, which

S
includes a factor of 4m. Equation (7-12) can be converted to the standard definition

of gain by adding (4'rr)2 to the denominator.

The gain Gs of the array is proportional to the intensity of the diffraction pattern
of the array in the direction of the receiver. In the incoherent case, the intensity of
the whole array is the sum of the intensities of all the cube corners. In Section 5. 1.2,
we showed that the intensity Ip from each cube corner in terms of the dimensionless

intensity F’ is

2

S
I =——F1T .
P )\2D2 0

For an array of identical cube corners, the intensity is

2

S
I:-— F/I
E:p )\2D2§: 0

In order to facilitate comparison with the range equation, let us make the substitutions
D=R ,

dE . 1
I.== G — |,
07 & Tt 2

which results in

2
-_S e
b 22 2 : F' o G2

2
_dE _[s AN
'dth<2 ZF> 1

R
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We can ignore the factors T A’ TS’ and éar and writez Ip in terms of the variables
used in the range equation:

_dE 1
Z L =" Gt(CGghg i

Comparing the two expressions forE Ip’ we see that

S2
I —— 4
GSAS = )\2 E F ,

which gives

- 5T 7)
A \"S

For a single cube corner at normal incidence, A = S. If the cube corner is perfect,

S
in the sense that the reflected field equals the incident field, then ¥’ = 1 at the center
of the far-field pattern, as shown in Section 5.1.2. The gain in this case is S/)\z.

The standard definition of gain for a perfect reflector of area S is 41TS/)\2.

7.12 Velocity Aberration

In the moving coordinate system of a retroreflector aboard a satellite, a laser
beam incident on the cube corner is reflected back along the same line as the incident
beam. In the coordinate system of the observer on the ground, the reflected beam
makes an angle 2v/c with the incident beam, where v is the component of the satellite's
velocity perpendicular to the line of sight. - The position of the receiving equipment in
the diffraction pattern of the array is therefore determined by the magnitude and direc-
tion of the tangential component of the satellite's velocity. Since the transfer function
varies within the diffraction pattern, it can also vary with the amount and direction of
the velocity aberration. In cases studied, fortunately, the variation is not too large
and is reduced when the beam width is deliberately widened, such as by building

dihedral-angle offsets into the cube corners.
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7.13 Variation of the Transfer Function within the Diffraction Pattern

The light reflected from each cube corner in an array is initially a separate pen-
cil of light antiparallel to the incident beam. At large distances from the array, the
individual reflections spread, owing to diffraction, and overlap each other. It is
assumed that the return is observed at a distance large enough so that the diffraction
patterns of the individual cube corners are much larger than the size of the retro-
reflector array. Under these conditions, the difference in position of the centers of
the individual diffraction patterns can be neglected. The incoherent intensity at a
particular point in the far field is obtained by adding the intensity of the diffraction
pattern of each cube corner at that point. Since cube-corner diffraction patterns can
be rather lumpy, the incoherent return energy will vary at different points in the far
field. The average position of the incoherent return pulse is calculated from equation
(7-3). Although the values of dK are essentially constant over the whole diffraction
pattern, the intensities SK of the individual reflections vary from point to point.
Therefore, the mean position of the pulse varies at different points in the diffraction
pattern. At each point, there will also be variations about the incoherent values as
a result of coherent interference.

In cases where the information available on the optical specifications of the cube
corners is insufficient to model the diffraction patterns, we can assume that the
intensity due to each reflector is proportional to the active reflecting area of the cube
corner. This is equivalent to assuming that the diffraction patterns of all cube cor-
ners are identical.
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8. RETROREFLECTOR-POSITION CALCULATIONS

8.1 Calculation of Retroreflector Positions and Orientations

In Section 7.1, we described the coordinate system of the retroreflector positions
and orientations, in which three coordinates and three angles were given for each cube

corner.

The arrays carried by many of the retroreflector satellites now in orbit consist
of several panels with cube corners arranged in rows and columns on each panel. The
general procedure for computing the position of each cube corner is first to compute
the position with respect to the panel and then, through a series of translations and
rotations, to move the panel to its position on the satellite. The rotations performed

define the direction of the normal to the front face of the cube corner.

Let the panel, row, and column indices of a cube corner be I, J, and K, respec-
tively (see Figure 74). The position of a cube corner with respect to the supporting

panel is
Xg = CXIJ+ K-1)dx ,

yIJK=CyI+(J-l)dy ’ -

The constant C 21 is the height of the cube-corner face above the hinge point of the
panel.
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Figure 74. A panel of cube corners.

The arrangement of the panels on most satellite arrays is such that it is conven-
ient to rotate the panel about the x and y axes by the angles [31 and c|>I, displace the
panel by AxI, AyI, and AzI, and then rotate about the z axis by the angle eI. The
result is

X‘.EJK AxI cos ¢I 0 sin ¢I 1 0 0 X19K
yiJK = AyI + 0 1 0 0 cos [31 -sin ﬁI Y13k 5
ZiJK Az “\-sin ¢; 0 cosop 0 sinp; cosf; Z13K
n : 14
XIJK cos eI -sin eI 0 XIJK
n — 2. 4
yIJK = sin OI cos OI 0 yIJK
n 4
2IJK 0 0 1 213K

The double-primed coordinates are the positions of the center of the front face of each

cube corner in the array coordinate system.
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The direction (G ¢R) of the normal to the front face of the cube corner is

obtained by performing the ﬁI’ b and 6. rotations successively on the vector (0, 0, 1)

I
and then computing the angles of the vector, from which we get

x’ cos ¢y 0 sing 1 0 0 0
y' ] = 0 1 0 0 cos B -sin [31 0 ’
’ ol .
z sin ¢I 0 cos b1 0 sin BI cos ﬁI 1
- -l
og=6;+tan " (L) ,
-1 x’2 + X,.‘Z
ch = tan ° =7 .

Let the orientation of the cube corner on the panel be a’, as shown in Figure 75.
The angle o’ is the orientation with respect to the pole Op op- The orientation a can
be computed with respect to the pole of the array coordinate system (6 = ¢ = 0), as de-

scribed in Section 8.2, by using

Figure 75. Orientation of a cube corner on a panel.
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The above method was used to calculate retroreflector positions for the satellites
analyzed in Weiffenbach (1973) and Arnold (1972, 1975a). The geometry of the Starlette
array, whose transfer function is given in Arnold (1975a), is described in Centre National
d'Etudes Spatiales (CNES, 1972). Photographs showing the construction of Starlette
have also been published (CNES, 1975). The information used to compute retroreflector
positions for Geos 3 can be fouﬁd in Arnold (1975b).

8.2 Orientation with Respect to a New Pole

In computing the position and orientation of a cube corner in an array, the orien-
tation o’ can be given initially with respect to some local pole having angular coor-
dinates ep and ¢p with respect to the z axis of the array coordinate system (see Figure
76). All such orientations must be expressed with respect to the z axis of the array
(®=¢ = 0). Let the normal to the face of the reflector be given by the angles GR and
bR The orientation angle is measured left from the great circle joining the points

(GR, daR) and (ep, cbp) on a unit sphere, as shown in Figure 77. The plane in Figure 77

-
o) \Y} b)

Figure 76. a) Direction of a local pole; b) direction of the normal to the front face of
a cube corner.

154

© Smithsonian Astrophysical Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979SAOSR.382.....A

ACBR_382. _ LA

DSA

rt

TO POLE
(85 ¢p) TO POLE (8=¢=0)
PROJECTION \
OF BACK EDGE
ONTO FACE OF % \
CUBE CORNER '\ \
\

Figure 77. Diagram for computing the orientation of a cube corner with respect to a
new pole (6 = ¢ = 0).

is the front face of the cube corner. To express the orientation with respect to a
. —
new pole, we must compute the difference in direction to the two poles. Let V be

a unit vector in the direction (E)p, ¢p) with the following components:

VX= sm¢p cos ep s

V= si.ncbp sin ©

y p ’

Vz=cos<j>p .

Let an x’,y’, z" coordinate system be defined with z’ in the direction of the normal to
the front face of the cube corner (BR, ch), the x’ axis in the direction of increasing

bR and the y’ axis in the direction of increasing 6 The components of V in the

R’
x’,y’, 2z’ coordinate system can be obtained by rotating the x,y, z coordinate system
about the z axis by the angle GR and then about the new y axis by the angle bR The

result is
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V., cos ¢p 0 —sinch cos 0 sineR 0 Vv

X R X
Vy’ = 0 1 0 - -sin eR cos GR 0 Vy .
Vz’ sin q)R 0 cos ¢’R ’ 0 0 1 VZ

The angle to the pole (6 = ¢ = 0) in the X'y’ plane is 6” = m, while the angle to the pole
(ep, ¢p) in the x’y’ coordinate system is

8’ = ta_n—l XL'.
v, ¢

X
The desired orientation a from Figure 77 is

a=a’+06’' -7 .

8.3 Condensing Large Arrays for Coherent Calculations

The amount of computer time required to compute the energy and mean position
of a coherent return from a satellite retroreflector array is roughly proportional to
the square of the number of active retroreflectors. Satellites such as Geos 1 and
Geos 2 have a very large number of reflectors, all of which are generally active since
they all face the same direction. The variations in energy and mean position are
largely independent of the number of reflectors as long as the number is reasonably
large. Guidelines regarding what is concidered a reasonably large number of re-
flectors were given in Section 6. Considerable savings in computer time can be
accomplished by averaging groups of neighboring reflectors and representing each
group by a single reflector at the mean position, weighted by the number of cube cor-

ners averaged. All reflectors averaged must have the same orientation.
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8.4 Shadowing

8.4.1 Geos

Both Geos 1 and Geos 2 have a hemispherical structure in the center of the side
containing the retroreflector pa.ﬁels (see Figure 78). At large incidence angles, some
of the cube corners may be shadowed by its structure. Let x, y, and z be the coor-
dinates of a cube corner, and let the center of the hemisphere of radius R be located
on the symmetry axis of the satellite a distance z, from the satellite center of mass
(CM). The position of the cube corner in a coordinate system with its origin at the

center of the sphere is

x'=x , (8-1a)
y=y , (8-1b)
z'=2z - z, - (8-1c)

A5,

|z¢

cm ¥

—~ y
/s

N\

g \J//

i
l
I
i
l

Figure 78. a) Geos 1l and 2 satellites; b) direction of incident beam on Geos 1 and 2.

Let the direction of the incident beam be (6, ¢), as shown in Figure 78. We can
rotate the x’,y’, z’ coordinate system about the z’ axis by 6 and about the new y’ axis
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by ¢ so that the final z” axis points toward the source. The coordinates of the cube

corner become

x” éosd 0 -sing cos® sine6 0\ /x’
y”" | = 0 1 0 -sin® cos® 0 y’ . (8-2)
z” sin¢g 0 cosq 0 0 1 z’

The cube corner will be shadowed if both
z” <0

and

Vx"z + y"2 <R .

The values of R and z, for the two Geos satellites are as follows:

Satellite R (m) z, (m)
Geos 1 0.3048 0.423
Geos 2 0.3048 0.444

8.4.2 Peole

The Peole satellite has a frustrum of a cone extending from the satellite in the
positive z direction. The axis of the cone is the z axis. Let R 1 and R, be the radii
of the bottom and the top of the cone, respectively, and let z, be the z coordinate of
the base and H be the height. The position of a cube corner with respect to the center
of the bottom of the cone is given by equations (8-1), where x, y, and z are the coor-
dinates of the cube corner with respect to the center of mass of the satellite. Let the
direction of the incident beam be (6, ¢). Rotating the primed coordinate system so
that the z” axis points in that direction, we get the coordinates given by equation (8-2).
The frustrum of a cone in the double~-primed coordinate system has the shape shown

in Figure 79.
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Xe = H sin ¢ b=R, cos ¢

Figure 79. Shape of Peole cone.

The cube corner will be shadowed if the following four conditions are met:

or if

or if

The values of the parameters, in meters, are

zc=0.89l s H=0.561 , Rl=0.l5l , R,=0.051 .
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