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1. Introduction 
 
The theme of this conference is “Toward Millimeter Accuracy”. There are a number of effects that can 
cause systematic errors in laser ranging at the millimeter level. These effects are difficult to see in orbital 
analysis but can be calculated analytically using computer models of the retroreflector array and the laser 
ranging system. 
 
The data shown in this report has been calculated theoretically. Some of the results are confirmed by 
experimental data. The rest would required additional experiments to verify whether the analysis is correct. 
 
Some of this work was funded by NASA. The rest was done privately as part of an informal proposal for 
funding to participate in the activities of the Signal Processing working group. The results of this proposal 
effort are being presented at this conference to illustrate the kinds of problems that can be studied and the 
results that can be obtained relative to the goal of achieving millimeter accuracy. The computer models that 
have been developed are described in Appendix A. 



2. Diffraction patterns of single cube corners. 
 
 A. Diffraction patterns of a coated circular cube corner. 
 

   
                               (A) No Dihedral                                          (B)  On first ring 
 

   
                         ( C)  Between rings 1 & 2                               (D) On second ring 
 

   
                         (E) Between rings 2 & 3                                   (F) On third ring 
 
Figure 1. Coated 1.5 inch cube corner with various dihedral angle offsets. 



Figure 1 shows some diffraction patterns of a perfect circular coated 1.5 inch cube corner with index of 
refraction n =1.461 for different dihedral angle offsets. The size of the plots is from -50 to +50 
microradians in both dimensions. The patterns are displayed as inverted gray scale plots. Part (A) is a 
logarithmic plot. Parts (B) - (F)  are linear plots. 
 
The beam spread γ if the three dihedral angles of a cube corner are offset by an angle δ is given by the 
equation 
 

γ =
4
3

6nδ           (1) 

 
where n is the index of refraction. At normal incidence the geometrical optics solution is six spots in the 
form of a hexagon. 
 
Part (A) of the figure shows the diffraction pattern with no dihedral angle offset. The diffraction pattern is 
displayed as a logarithmic plot in order to show the rings. In a linear plot, only the central lobe would be 
visible. The three rings are at 22.82, 37.40 and 51.63 microradians. 
 
Part (B) shows the diffraction pattern with a dihedral angle offset .986 arc seconds. Using equation (1) for 
this offset gives a beam spread of 22.82 microradians, the same as the first ring. Because of diffraction 
effects, the six spots that would exits in the  geometrical optics solution coalesce into a smooth ring. 
 
In part (C) the dihedral angle of 1.30 arc seconds is trying to create spots between the first and second 
rings. The pattern shows hexagonal symmetry outside the first ring. 
 
In part (D) the dihedral angle of 1.62 arc seconds gives a beam spread from equation (1) of 37.40 
microradians, the same as the radius of the second diffraction ring. The second ring is the brightest, but is 
not as smooth as the first ring. 
 
In part (E) the dihedral angle of 1.92 arc sec is trying to put spots between the second and third rings. The 
pattern is more complicated. 
 
In part (F) the dihedral angle offset of 2.2 arc seconds gives a beam spread from equation (1) of 51.63 arc 
sec, the same as the third diffraction ring. The third ring is the brightest and there are six spots at the 
position of the geometrical optics solution. 
 
 B. Diffraction patterns of an uncoated circular cube corner. 
 
Figure 2 shows diffraction patterns of a 1.5 inch diameter circular uncoated cube corner. The first column 
(left) shows the total energy. The second column (middle) shows the component of the reflected energy 
that is in the same (parallel) polarization state as the input. The third column (right) shows the energy in the 
orthogonal component. The first column is the sum of columns two and three. 
 
Parts (A), (B), and (C) of figure 2 are for circular polarization with no dihedral angle offset. Part (B) has 
triangular symmetry and the energy is primarily in the central lobe. Part (C) has hexagonal symmetry and 
the energy is primarily in the ring of six spots. The total energy in part (A) does not have perfect hexagonal 
symmetry, but there are six spots around the central lobe that are approximately in the shape of a hexagon. 



Circular polarization 
 

No dihedral angle offset 

     
       (A) Total energy                          (B) Parallel component                (C) Orthogonal Component 
 

Dihedral angle offset 1.25 arc seconds 

     
       (D) Total energy                         (E) Parallel component                 (F) Orthogonal Component 
 

Linear vertical polarization 
 

No dihedral angle offset 

     
        (G) Total energy                        (H) Parallel component                 (I) Orthogonal Component 
 

Dihedral angle offset 1.25 arc seconds 

     
         (J) Total energy                        (K) Parallel component                 (L) Orthogonal Component 
 
Figure 2. Diffraction pattern of an uncoated 1.5 inch cube corner with, and without, a dihedral angle offset, 
for circular and linear input polarization. 



Parts (D), (E), and (F) are for circular polarization with a dihedral angle offset. 
 
Parts (G), (H), and (I) are with linear vertical polarization and no dihedral angle offset. Parts (H), and (I) 
show symmetry from left to right. The total energy in part (G) has six spots around the central lobe that are 
approximately in the shape of a hexagon with left to right symmetry. Parts (G), (H), and (I) have been 
observed experimentally (see figures 3, 4, and 5 of reference 1). 
 
Parts (J), (K), and (L) are for linear polarization with a dihedral angle offset. There is an interaction 
between the linear polarization and the dihedral angle offset that  creates a “dumbbell” type pattern aligned 
with the polarization vector. The patterns show left to right symmetry. 
 
With no dihedral angle offset the total energy as shown in parts (A) and (G) has a nearly hexagonal shape. 
With a dihedral angle offset, the total energy for circular polarization has approximately circular symmetry. 
The total energy for linear polarization has a “dumbbell” shape. 
 
In an array of cube corners with no dihedral angle offset, the six spots around the central peak can be made 
into a reasonably smooth ring by having a distribution of orientations for the cube corners. However, this 
cannot be done with a dihedral angle offset and linear polarization because the interaction between the 
polarization and the dihedral angle offset produces a “dumbbell” shaped pattern aligned with the 
polarization vector. 
 
3. Basic principles of retroreflector array design. 
 
 A. Geometry of the array. 
 
For a single cube corner, the range correction can be calculated to a high degree of accuracy from the index 
of refraction and the angle of incidence. However, a single cube may not provide adequate signal strength 
or adequate angular coverage. 
 
For a planar array of identical cubes all at the same orientation, the range correction will be the same as 
that of a single cube at the center of mass of the array. In practice, manufacturing imperfections cause 
variations in the reflecting properties of different cubes that can cause changes in the range correction. 
 
The diffraction pattern of a cube corner depends on the incidence angle. For an array of cubes at different 
orientations (such as a spherical array), the range correction will be different at each point in the far field 
diffraction pattern. 
 
 B. Size of the array 
 
A single retroreflector acts like a point reflector. There is no pulse spreading and no  uncertainty in the 
range correction. If the target consists of a number of cube corners at different distances along the line of 
sight, there will be spreading of the pulse. In order to minimize range uncertainties, the range depth of the 
array should be kept as small as possible. 



 C. Velocity aberration and diffraction. 
 
Because of velocity aberration, the center of the return beam is deflected away from the source by the angle 
2v/c where v is the component of the satellite’s velocity perpendicular to the line of sight. The signal at the 
receiver will depend on the intensity of the diffraction pattern of the cube corners at an angle 2v/c from the 
center of the return beam. Having a smooth diffraction pattern at 2v/c will minimize the variations in the 
cross section and range correction. 
 
The smoothest part of the diffraction pattern is the central lobe. For a coated cube corner the first zero is at 
1.22 λ/D where λ is the wavelength and D is the diameter of the cube corner. In low earth orbit, the cube 
corner would have to be quite small to put the receiver on the central lobe. Using the first ring as in Figure 
1(B) would also produce a smooth pattern with a coated cube corner and allow the use of a larger cube. 
 
Uncoated cubes have a natural beam spread with six spots around the central lobe. This is the result of 
polarization effects caused by total internal reflection at the back faces. The beam is wider than for a coated 
cube without the need for a dihedral angle offset. 
 
 D. Thermal gradients 
 
The diffraction pattern of a cube corner can be severely degraded by thermal gradients in the material. The 
larger the cube corner the greater the sensitivity to thermal gradients because of the longer optical path 
lengths and the larger total temperature difference for a particular gradient. With a linear vertical 
temperature gradient the effect on the central irradiance of a coated cube corner is proportional to the 
square of the diameter of the cube corner. Another problem in coated cube corners is absorption of sunlight 
at the metalized back reflecting faces. 
 
 E. Dihedral angle offsets. 
 
It is difficult (and expensive) to manufacture a cube corner with a specific dihedral angle offset. The 
smaller the tolerance the greater the cost. A tolerance less than .5 arc seconds could result in a lot of cube 
corners being rejected or re-manufactured. 
 
One reason for having a specific dihedral angle offset is to be able to model the transfer function of the 
array. For the purposes of modeling it does not really matter what the dihedral angle is as long as its value 
is known. Measuring and recording the angles can be more cost effective than setting tight tolerances as 
long at the angles are within the range needed to achieve the necessary beam spread. 
 
 F. Coated vs uncoated cube corners. 
 
The choice of coated or uncoated cubes will depend on the requirements. Some of the properties to be 
considered are the following: 
 
a. Uncoated cube corners lose total internal reflection starting at about 17 degrees incidence angle. In a 
spherical satellite this has the effect of reducing the range depth. Having less range depth reduces the pulse 
spreading, coherent variations, and possible variations in range correction. 



 
b. The reflection from an uncoated cube corner has energy in both polarization components regardless of 
the input polarization. Coherent interference occurs only within each polarization component. In other 
words, the x component cannot interfere with the y component and vice versa. This results in better 
averaging of coherent interference by a factor of 2 . 
 
c. Uncoated cubes have a higher reflectivity at normal incidence than coated cubes because of total internal 
reflection. The helps to compensate for the loss of signal past the cutoff angle for total internal reflection so 
as to produce a stronger signal with less range depth. 
 
d. Uncoated cubes have no back faces to absorb solar radiation and contribute to thermal gradients. 
 
e. Uncoated cubes have no back faces that could peel or be subject to deterioration over long periods of 
time. 
 
f. The natural beam spread in an uncoated cube can eliminate the need for a dihedral angle offset. There is 
a cost advantage to specifying the dihedral angle as 90 degrees with some tolerance. A negative dihedral 
angle offset produces about the same pattern as a positive dihedral angle offset. Specifying the dihedral 
angle as 90 degrees with a tolerance of 1/2 arc second gives the same consistency of performance as 
specifying the angle as 90 degrees plus 1/4 arc second with a tolerance of 1/4 arc second. 
 
g. The cutoff angle in an uncoated cube corner can vary from about 17 degrees to the normal cutoff of 
about 57 degrees depending on the orientation of the cube corner. To avoid anomalies in the transfer 
function for a spherical satellite it is necessary to have a distribution of orientations of the cube corners. A 
distribution of orientations is also desirable to smooth out the pattern since there are six spots outside the 
central lobe. 
 
h. If linear polarization is used the transfer function with uncoated cubes has a “dumbbell” shape which 
can introduce a systematic error if no correction is applied. The problem can be corrected by applying a 
correction for the asymmetry. The asymmetry can be eliminated by using circular polarization. 
 
4. Transfer function of the Lageos retroreflector array. 
 
The design goal for Lageos was 5 millimeters. To that level of accuracy the range correction can be 
considered constant. The peak to peak variations in the centroid range correction can be as large as + or - 5 
millimeters. The transfer function of the Lageos retroreflector array is given in reference 2. The method of 
calculation is described in reference 3. 
 
 A. Cross section and range correction at a single orientation 
 
The computer capabilities available in 1978 when reference 2 was published were very limited compared 
to what is available today. I have recalculated and re-plotted some of the figures from reference 2. The 
results are shown in figure 3. 



Cross section 
 

      Linear                                                                        Circular 
 

  
            (A)                                                                             (B) 
 

 Centroid range correction 
 

        Linear     Circular 
 

  
          (C)                            (D) 
 
Figure 3. Cross section and range correction for linear vertical polarization and circular polarization. The 
satellite orientation angle is θ = 20 deg, and φ = 150 degrees. The dihedral angle offset is 1.25 arc seconds. 
The wavelength is 532 nanometers. 
 
The correspondence between the figures in reference 2 and figure 3 of this report is as follows: 



Reference 2  This report 
 
Figure 9-2  Figure 3(A) 
Figure 9-10  Figure 3(B) 
Figure 10-2  Figure 3(C) 
Figure 10-10  Figure 3(D) 
 
In reference 2 the diffraction pattern was calculated as a 21 x 21 matrix from -50 to +50 microradians in 
the far field. The 21 x 21 matrix which gives points only every 5 microradians was used to conserve 
computer time. The data was presented as a computer page plot with hand drawn contour lines. 
 
In figure 3 of this report the pattern is calculated as a 51 x 51 matrix which gives points every 2 
microradians. The cross section is presented as a gray scale plot and the centroid range correction matrix is 
presented as a rainbow plot with  red for larger values and blue for smaller values. The incidence angle is θ 
= 20 deg, and φ = 150 deg. 
 
Figure 3(A) shows that the cross section with linear polarization has a “dumbbell” shape. The cross section 
with circular polarization in part (B) has approximately circular symmetry. The centroid range correction 
matrices for linear polarization in part (C) and circular polarization in part (D) are more irregular and do 
not show a clear “dumbbell” or circular pattern. 
 
The Lageos 2 retroreflector array was tested in the laboratory before launch and the results published in 
reference 4. At a meeting last year, one of the authors, Michael Selden, told me that the testing showed a 
difference in the range correction for Lageos between linear and circular polarization. He wanted to know 
if my theoretical analysis agreed with the experimental results. 
 
As you can see from figure 3, the range correction matrix is different for linear and circular polarization. 
However, both are somewhat irregular at least as the particular orientation of the satellite used in the 
calculation. 
 
 B. Average cross section and range correction 
 
In thinking about Michael Selden’s question it seemed to me that the range correction should have circular 
symmetry for circular polarization and that the irregular shape in figure 3 might be due to the fact that there 
a limited number of retroreflectors active at a particular orientation of the satellite. 
 
In order to test this idea I decided to do calculations at a number of orientations and average the results to 
see if the average range correction has well defined symmetry properties. The test used 16 orientations 
starting at θ = φ = 0 degrees and incrementing each angle by 5 degrees up to θ = φ = 75 degrees. The 
results are shown in figure 4. 
 
Figure 4 shows that the average cross section and centroid range correction have a “dumbbell” shape for 
linear polarization and circular symmetry for circular polarization. The range correction for circular 
polarization still shows some irregularities in shape but is approaching circular symmetry. 



 
Cross section 

 
  Linear                      Circular 
 

  
          (A)                            (B) 
 
 

Centroid range correction 
 

       Linear     Circular 
 

  
            (C)           (D) 
 
Figure 4. Cross section and range correction for linear vertical polarization and circular polarization. The 
cross section and range correction are averaged over 16 orientations. The dihedral angle offset is 1.25 arc 
seconds. The wavelength is 532 nanometers. 
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Microrad    Minimum      Average    Maximum    Max - Min 
     0.0   0.0002900   0.0002900   0.0002900   0.0000000 
     2.0   0.0001300   0.0002844   0.0004400   0.0003100 
     4.0  -0.0003500   0.0003055   0.0010100   0.0013600 
     6.0  -0.0012600   0.0004070   0.0023200   0.0035800 
     8.0  -0.0025000   0.0007455   0.0049800   0.0074800 
    10.0  -0.0035400   0.0013697   0.0088700   0.0124100 
    12.0  -0.0036900   0.0017901   0.0112100   0.0149000 
    14.0  -0.0030300   0.0015349   0.0093900   0.0124200 
    16.0  -0.0022200   0.0010137   0.0062200   0.0084400 
    18.0  -0.0016600   0.0006380   0.0040457   0.0057057 
    20.0  -0.0013800   0.0004527   0.0030525   0.0044325 
    22.0  -0.0013300   0.0003919   0.0027589   0.0040889 
    24.0  -0.0013900   0.0004026   0.0028730   0.0042630 
    26.0  -0.0014900   0.0004448   0.0031460   0.0046360 
    28.0  -0.0015300   0.0004764   0.0033378   0.0048678 
    30.0  -0.0014600   0.0004607   0.0032251   0.0046851 
    32.0  -0.0012962   0.0003913   0.0028010   0.0040972 
    34.0  -0.0011050   0.0003009   0.0022466   0.0033516 
    36.0  -0.0009526   0.0002213   0.0017655   0.0027181 
    38.0  -0.0008383   0.0001650   0.0014557   0.0022940 
    40.0  -0.0007818   0.0001302   0.0012738   0.0020556 
    42.0  -0.0007613   0.0001063   0.0011648   0.0019262 
    44.0  -0.0007415   0.0000879   0.0010549   0.0017964 
    46.0  -0.0007180   0.0000698   0.0008940   0.0016120 
    48.0  -0.0006269   0.0000507   0.0006611   0.0012880 
    50.0  -0.0008095   0.0000319   0.0007943   0.0016039 
 
Figure 5. Centroid with circular polarization minus centroid with linear polarization averaged over 16 
orientations. 



Figure 5 shows the difference in the centroid range correction between linear and circular polarization. 
Since the pattern for circular polarization is circular and the pattern for linear polarization has left to right 
symmetry, the difference between the two patterns has left to right symmetry. It also has vertical symmetry 
(top to bottom). 
 
The table under the color plot in figure 5 shows the value of the difference in range correction averaged 
around circles of increasing radius in the far field. Column 1 is the radius of the circle in microradians, 
column 2 is the minimum value around the circle, column 3 is the average, column 4 is the maximum value 
around the circle, and column 5 is the difference between the maximum and minimum values. In the 
interval from 32 to 38 microradians, the difference in the centroid range correction can vary by up to 4 
millimeters. The effect is systematic and does not average out. 
 
The asymmetry of the range correction for linear polarization will cause a systematic error in laser range 
data. For example, suppose the transmitted pulse has linear vertical polarization. The velocity aberration at 
culmination is approximately horizontal. This puts the receiver on the horizontal axis of the range 
correction matrix. The result is a distortion of the shape of a pass that does not go away no matter how 
many passes are averaged. The velocity aberration is nearly perpendicular to the line of sight at 
culmination. As a result the velocity aberration has its maximum value. This can cause a systematic error in 
the range correction for either linear or circular polarization. 
 
 C. Spinning satellite. 
 
Both Lageos 1 and Lageos 2 were launched spinning. The spin rate decreases with time and is currently 
quite low for Lageos 1. Even if the satellite were not spinning, the viewing angle would vary throughout a 
pass as a result of the observing geometry. 
 
Figure 6 shows the range correction for linear polarization at two points in the far field with the satellite 
spinning about its symmetry axis. The first point is on the vertical velocity aberration axis at x = 0, y = 35 
microradians. The red curve is the centroid and the green curve is the half-max range correction. The 
second point is on the horizontal velocity aberration axis at x = 35, y = 0 microradians. The purple curve is 
the centroid and the blue curve is the half-max range correction. The range correction is always greater on 
the vertical axis. The average value of each range correction in millimeters is shown below. 
 
Case  Average              rms         color 
 
Centroid (0,35) 243.3  1.5 red 
Centroid (35,0) 240.2  1.7 purple 
Halfmax (0,35) 250.6  0.6 green 
Halfmax (35,0) 249.9  0.7 blue 
Centroid (both) 241.7  2.2 
Halfmax (both) 250.2  0.7 
 
The difference between the average centroid at the two points in the far field is 3.1 millimeters. The 
difference between the average half-max range corrections at the two points is .7 millimeters. 
 
Figure 7 plots the difference between the range corrections at the two points in the far field. The red curve 
is for the centroid and the green curve is for half-max. 



Range correction vs satellite rotation angle 
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Figure 6. Centroid and half-max range correction vs satellite rotation angle at velocity aberration (0,35) 
and (35,0) µrad with linear vertical polarization (y-axis). 
A. Velocity aberration x = 0 µrad, y = 35 µrad. 
 red     = Centroid 
 green = Half-max 
B. Velocity aberration x = 35 µrad, y = 0 µrad 
 Purple = Centroid 
 Blue    = Half-max  
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Figure 7. Range correction at (0,35) minus range correction at (35,0) µrad. 
 Red = centroid(0,35)  - centroid(35,0) 
 Green = half-max(0,35) - half-max(35,0) 



 
The variations in the half-max range correction are smaller than for the centroid since the half-max 
correction tends to measure the leading edge of the pulse. These calculations are for the incoherent case. 
They do not include the effects of coherence or photon quantization. These effects cause fluctuations in the 
range correction from pulse to pulse and can introduce a bias in multi-photoelectron measurements 
depending on the type of detection algorithm used. 
 
 D. Coherent variations of the range correction 
 
Table 16 of the Lageos report in reference 2 presents some calculations of the coherent variation of various 
type of range correction for different pulse lengths. 
    ∆     σ  σm   ∆ /σm  
 _________________________________________ 
 
         Centroid, Equal Weighting 
 -2.16   8.67  0.43  -4.98 
 
           Centroid, Weighted by Signal Strength 
  0.04   7.08  0.35   0.11 
 
        Half-Area, Equal Weighting 
 -2.55  10.07  0.50  -5.06 
 
           Half-Area Weighted by Signal Strength 
   -.82   7.72  0.39  -2.12 
 
    Half-Maximum, Equal Weighting 
 -3.47   9.84  0.49  -7.06 
 
      Half-Maximum, Weighted by Signal Strength 
 -2.54   6.93  0.35  -7.33 
 
Table 1. Difference between the average range correction for a set of coherent returns and the range 
correction for the incoherent return. The pulse length is 200 nsec; ∆,  σ, andσm  are in millimeters. There 
are 400 returns in each sample; σm  = σ/20. 
 
 
Table 1 above shows the entries from table 16 in reference 2 for a pulse length of 200 picoseconds. In all 
but one of the cases, there is a statistically significant difference between the incoherent range correction 
and the average of the coherent range corrections.  
 
The one exception is centroid detection with each measurement weighted by the signal strength. Since 
single photoelectron returns all have the same signal strength and measure the centroid, there should be no 
bias due to coherent variations. All the other types of measurements show a bias greater then 2 millimeters 
in this simulation for equal weighting. For half-max detection there is not much improvement when the 
returns are weighted by signal strength. 



 
The calculations shown in table 1 do not model two effects which should decrease all of the variations. The 
first is that the calculation did not take into account the fact that there are two independent polarization 
states for each Lageos return because the cube corners are uncoated. Since each return is really two 
independent returns, the rms variations are probably smaller by a factor of 2  than what is listed in the 
table. 
 
The second effect is that a pulse of finite length cannot be exactly monochromatic. This should further 
reduce the coherent variations. The coherent variation for centroid and half-max weighted by signal 
strength is about 7 millimeters. Dividing this by 2  gives 5 millimeters or less as an estimate of the 
coherent variations with a 200 picosecond pulse. 
 
 E. Signal strength dependence. 
 
The signal processed by a laser receiving systems consists of a discrete number of photoelectrons. If the 
number of photoelectrons is large, the signal should be a good representation of the received signal. If the 
signal consists of a small number of photoelectrons, there will be variations in the shape of the pulse due to 
photon quantization. 
 
For half-max detection systems, there will be a shift in the range correction as a function of signal strength. 
For single photoelectron returns, the average position of the photoelectron will be at the centroid of the 
retroreflector array. For half-max systems with a strong signal, the average measured position will be the 
half-max point on the leading edge of the pulse. 
 
Figure 8 shows the results of a Lageos simulation with different pulse detection algorithms for average 
signal strengths from .1 to 1000 photoelectrons. The simulation is done for an orientation of the satellite 
where the centroid is 241 millimeters from the center of the array. 
 
The rise time of the photo-multiplier is assumed to be .125 nanosecond and the half-max, half-width of a 
single photoelectron is 8.6 millimeters. For a photoelectron at the centroid the half-max point of the return 
is at 241 + 8.6 = 249.6 millimeters. 
 
The transmitted pulse used in the simulation is 200 picoseconds which gives a one-way half-max, half 
width of 15 millimeters for the transmitted pulse. The half width of the return from the Lageos array (with 
a zero length input pulse) is about 21 millimeters. Convolving the transmitted pulse with the Lageos array 
and the photo-multiplier response gives a half width of about 27 millimeters for the return pulse. Adding 
this to the centroid of 241 millimeters gives a value of 268 millimeters for the half-max point on the return 
pulse for the strong signal case. 
 
The top curve in blue in figure 8 is the average position of the half-max point on the return pulse vs signal 
strength. It starts out at 250 millimeters for single photoelectron returns and rises to 268 millimeters for 
strong signals. The green curve is the half-area point and the red curve (partially obscured by the green 
curve) is the centroid. 
 
Figure 9 shows the variation of the range correction with signal strength for a set of target measurements. 
For the target measurements there is no spreading due to the target. The only spreading is due to the width 
of the transmitted pulse and the spreading of the photo-multiplier. This give a combined spreading of about 
17 millimeters. Adding this to the centroid of 241 millimeters gives a half-max point of 258 millimeters for 
the strong signal case. 



 
Range correction vs average number of photoelectrons 
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Figure 8. Range correction for Lageos vs number of photoelectrons. 
 Blue = Half-Max 
 Green = Half Area 
 Red = Centroid 
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Figure 9. Range correction for target calibration compared to Lageos Half-Max 
 Blue = Half-Max 
  Square = Lageos 
  Circle = Target 
 Red  = Centroid and Half Area 



 
The blue curve with circles in figure 9 is the position of the half-max point for the target measurements vs 
signal strength. The curve with blue squares is the half-max position for Lageos for comparison. The 
difference between the blue squares and the blue circles is the range correction that would need to be 
applied to Lageos range measurements as a function of signal strength. It is about 10 millimeters for this 
set of station parameters. 
 
Appendix B shows the numerical data used to plot figures 8 and 9, describes the format of the tables, lists 
all the parameters used in the simulations, and gives a theoretical computation of the pulse spreading for 
comparison with the numerical simulation. 
 
Appendix C gives a theoretical description of computer programs RETURN and LRSS which were used to 
do the signal strength simulations. 
 
5. Transfer function of the TOPEX retroreflector array. 
 
The retroreflector array on TOPEX/POSEIDON is larger than on many other satellites. The variations of 
the range correction with velocity aberration can be a few centimeters which is large enough to be seen in 
orbital analysis. In order to obtain adequate accuracy from satellite laser tracking it was necessary to 
compute the range correction as a function of velocity aberration at each incidence angle on the array. 
 
Figure 10 shows cross section and range correction matrices for TOPEX from 0 to 60 degrees incidence 
angle. At 0 degrees the cross section has circular symmetry and the range correction is constant. At other 
incidence angles the pattern becomes asymmetrical. The asymmetry is the result of the dihedral angle 
offsets. The offset of each of the three back angles is 1.75 arc seconds. However, the divergence of the 
reflected spots depends on the order of reflection except at normal incidence. 
 
Figure 11 shows the details of the cross section matrix at 40 degrees incidence angle. In the interval from 
26 to 50 microradians the cross section can vary from a low of 171 to a high of 794 in the units used for 
plotting. The cross section is in units of 4π ×104  square meters. 
 
Figure 12 shows the details of the centroid range correction at 40 degrees incidence angle. In the interval 
from 26 to 50 microradians the centroid can vary from a low of .466 to a high of .514 meters, a difference 
of almost 5 centimeters. 
 
The centroid is relatively easy to compute and is unique. The intensity of the diffraction pattern of the i  
cube corner at a point in the far field can be given as S

th

i θ1,θ2( ) where θ1 and θ2  are the components of 
the velocity aberration. The position along the line of sight is xi . The centroid range correction is given by  
 

Ri θ1,θ2( )=
Si θ1,θ2( )xi

i
∑

Si θ1,θ2( )
i
∑  

 
For other types of detection systems such as half-max, the range correction must be computed by plotting 
the pulse shape at each point in the far field. The range correction will be different for each type of tracking 
system depending on the transmitted pulse length, receiver rise time, and method of detection. 
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Figure 10. Topex cross section and centroid range correction vs incidence angle. 
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Microrad      Minimum      Average      Maximum    Max - Min 
     0.0  489.4849998  489.4849998  489.4849998    0.0000000 
     2.0  445.3091673  451.7482330  460.2240226   14.9148554 
     4.0  364.3271325  376.2008227  389.4566931   25.1295606 
     6.0  261.1307461  285.4701279  311.9223233   50.7915771 
     8.0  170.8840018  214.4467675  261.0669668   90.1829651 
    10.0  119.0825894  187.6761896  261.7588842  142.6762948 
    12.0  118.1161724  209.9228314  314.8369044  196.7207319 
    14.0  156.4614158  267.2486554  396.6649886  240.2035728 
    16.0  215.8758010  335.2755717  475.2044183  259.3286173 
    18.0  265.4050812  391.6353015  528.6968374  263.2917561 
    20.0  298.2786780  425.6962326  563.5087252  265.2300472 
    22.0  309.8627082  440.2211573  591.8992403  282.0365321 
    24.0  312.0507327  446.9562308  620.4357771  308.3850444 
    26.0  316.6035096  458.3720343  659.1760814  342.5725718 
    28.0  326.8786992  479.8423479  711.7925307  384.9138315 
    30.0  349.3779229  508.0959935  758.2196375  408.8417146 
    32.0  377.0046497  533.4914398  791.0682353  414.0635856 
    34.0  402.6764310  545.3260540  794.3722310  391.6958000 
    36.0  417.2127329  536.9520984  763.7709530  346.5582201 
    38.0  410.5974142  509.5386763  710.1096586  299.5122444 
    40.0  355.1654490  468.9192973  645.2657644  290.1003153 
    42.0  299.9186935  422.8592245  580.0306474  280.1119540 
    44.0  254.0910076  377.9353615  519.2259367  265.1349291 
    46.0  224.7911562  337.4302900  470.3656472  245.5744910 
    48.0  197.7001026  300.7906508  425.8873839  228.1872813 
    50.0  171.0913676  266.1335965  383.7737122  212.6823446 
 
Figure 11. Topex cross section for φ = 40 degrees incidence angle 
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Microrad      Minimum      Average      Maximum    Max - Min 
     0.0    0.4724049    0.4724049    0.4724049    0.0000000 
     2.0    0.4666691    0.4673081    0.4687676    0.0020985 
     4.0    0.4523631    0.4539938    0.4566284    0.0042652 
     6.0    0.4257099    0.4293210    0.4320979    0.0063880 
     8.0    0.3839133    0.3970060    0.4074840    0.0235707 
    10.0    0.3470787    0.3792045    0.4040112    0.0569325 
    12.0    0.3677682    0.3979261    0.4228421    0.0550739 
    14.0    0.4164559    0.4323093    0.4444229    0.0279670 
    16.0    0.4441747    0.4568523    0.4678594    0.0236847 
    18.0    0.4573846    0.4696824    0.4867587    0.0293742 
    20.0    0.4629551    0.4753994    0.4949082    0.0319531 
    22.0    0.4642413    0.4777824    0.4982947    0.0340534 
    24.0    0.4640330    0.4796338    0.5003336    0.0363006 
    26.0    0.4658928    0.4828465    0.5022588    0.0363660 
    28.0    0.4696983    0.4875240    0.5045417    0.0348434 
    30.0    0.4761811    0.4926806    0.5068545    0.0306734 
    32.0    0.4824622    0.4969321    0.5110175    0.0285553 
    34.0    0.4868215    0.4995607    0.5122519    0.0254304 
    36.0    0.4884893    0.5004261    0.5110413    0.0225520 
    38.0    0.4872767    0.4999017    0.5084432    0.0211665 
    40.0    0.4848260    0.4985097    0.5070389    0.0222129 
    42.0    0.4823142    0.4968927    0.5052074    0.0228932 
    44.0    0.4808566    0.4956154    0.5047393    0.0238827 
    46.0    0.4804566    0.4948373    0.5079527    0.0274962 
    48.0    0.4791453    0.4941571    0.5119505    0.0328051 
    50.0    0.4766798    0.4930398    0.5144387    0.0377589 
 
Figure 12. Topex centroid range correction (meters) at φ = 40 degrees incidence angle. 



 
For TOPEX, the diffraction pattern for each cube corner was computed at each incidence angle on the 
array along with the position along the line of sight. This was used to compute the range correction matrix 
at each incidence angle for each type of laser tracking system. 
 
For TOPEX this procedure was necessary in order to achieve a tracking accuracy on the order of one 
centimeter. The variation of the range correction at different points in the far field is generally much 
smaller for other satellites and would probably not be obvious during orbital analysis. 
 
In two-color ranging used to compute the atmospheric correction, it is necessary to have a much greater 
precision in the laser ranging than the accuracy desired for the atmospheric correction. For example, if the 
dispersion is a factor of 15, a one millimeter error in the range correction for the retroreflector array will 
cause an error of 1.5 centimeters in the atmospheric correction. The techniques developed for TOPEX 
could be used to increase the accuracy of the range correction for other satellites if the specifications of the 
retroreflectors are known,. 
 
6. Transfer function of the WESTPAC retroreflector array 
 
The WESTPAC satellite has hexagonal cube corners recessed in a cavity with a circular aperture. The 
method of calculating retroreflector array transfer functions described in reference 3 does not include the 
case of a recessed cube corner. However, the method has been extended to cover this particular case. It was 
possible to do this because the aperture of the cavity is smaller than the face of the cube corner so that the 
active reflecting area is determined only by the aperture. If the active reflecting area were the intersection 
of a circle and a hexagon, the analysis would have become extremely complicated. 
 
Figure 13 shows the diffraction pattern of a recessed WESTPAC cube corner at incidence angle from 0 to 
12 degrees at one degree intervals. The cutoff angle is 13 degrees so that the pattern at 13 degrees is zero. 
The diffraction patterns are shown as either a linear or logarithmic gray scale plot depending on which 
shows the details better. As the incidence angle increases, the pattern becomes more oval. Past 9 degrees 
the central lobe is wider than 50 microradians so that the receiver is always on the central lobe. 
 
Since the satellite orientation is unknown, there is no way to calculate the cross section for a particular 
observation. The only available data that gives some information about the cross section is the magnitude 
of the velocity aberration. One thing that can be done with the diffraction patterns is to calculate the 
maximum possible cross section as a function of velocity aberration. The results of doing this are shown in 
figure 14. 
 
In figure 14, the red curve is the maximum possible cross section as a function of velocity aberration with 
no dihedral angle offset. The WESTPAC cube corners are specified as having no dihedral angle offset 
within the manufacturing tolerances. The green curve shows the maximum possible cross section vs 
velocity aberration with a 1.75 arc second dihedral angle offset. The cross section is larger without a 
dihedral angle offset from 0 to 30 microradians velocity aberration. It is larger with a dihedral angle offset 
past 30 microradians. 
 
Table 2 shows the data used to plot figure 14. Column 1 of the table is the velocity aberration, column 2 is 
the maximum cross section in the units used for plotting, column 3 is the incidence angle where the 
maximum occurs and column 4 is the maximum cross section in standard units. The data in column 2 is in 
units of 4π ×104  square meters. 
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Figure 13. Cross section of a Westpac cube corner vs incidence angle in degrees. The cutoff angle is 13 
degrees. 
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Figure 14. Maximum cross section vs velocity aberration for a Westpac cube corner. 
 Red     =  No dihedral angle offset 
 Green =  Dihedral angle 1.75 arc seconds 
 
Microradians     Cross-section     angle (deg)  Cross Section (sq m) 
     0.0   35.8402293     0.0  2418805.6 
     2.0   35.3181832     0.0  2383573.5 
     4.0   33.7898797     0.0  2280430.5 
     6.0   31.3649939     0.0  2116778.4 
     8.0   28.2140207     0.0  1904123.7 
    10.0   24.5513900     0.0  1656938.1 
    12.0   20.6147328     0.0  1391258.7 
    14.0   16.6427276     0.0  1123193.8 
    16.0   12.8702210     0.0   868592.7 
    18.0    9.6913873     1.0   654057.8 
    20.0    7.4623938     2.0   503626.2 
    22.0    5.8602015     3.0   395496.6 
    24.0    4.6632240     4.0   314714.3 
    26.0    3.7767337     4.0   254886.3 
    28.0    3.1200028     5.0   210564.5 
    30.0    2.5685487     5.0   173347.7 
    32.0    2.1777955     6.0   146976.3 
    34.0    1.8420879     6.0   124319.9 
    36.0    1.5592573     7.0   105232.0 
    38.0    1.3636733     7.0    92032.4 
    40.0    1.1796034     7.0    79609.7 
    42.0    1.0083017     7.0    68048.8 
    44.0    0.8980635     8.0    60609.0 
    46.0    0.8019726     8.0    54124.0 
    48.0    0.7107092     8.0    47964.7 
    50.0    0.6246997     8.0    42160.1 
 
Table 2. Maximum cross section vs velocity aberration with no dihedral angle offset. Column 1 is the 
velocity aberration, column 2 is the cross section in units of 4π x 10,000 sq meters, column 3 is the 
incidence angle where the maximum occurs, and column 4 is the cross section in sq meters. 



With no dihedral angle offset the maximum cross section in the interval from 26 to 50 microradians in 
table 2 is about 255,000 square meters in standard units. The published value of the measured cross section 
for WESTPAC is in the range 200,000 to 300,000 square meters. 
 
Table 3 shows a sample of the data from which the maximum cross section was determined and Table 4 is 
the maximum cross section with a 1.75 arc second dihedral angle offset. 
 
Microrad      Minimum      Average      Maximum    Max - Min 
    26.0    0.7717976    1.5842181    2.6464027    1.8746051 
    28.0    0.5466180    1.3367811    2.4216995    1.8750815 
    30.0    0.3655866    1.1131764    2.1982273    1.8326407 
    32.0    0.2268892    0.9147052    1.9784917    1.7516025 
    34.0    0.1268098    0.7419771    1.7648064    1.6379966 
    36.0    0.0602277    0.5954080    1.5592573    1.4990296 
    38.0    0.0211537    0.4723924    1.3636733    1.3425196 
    40.0    0.0032599    0.3711284    1.1796034    1.1763435 
    42.0    0.0003617    0.2896156    1.0083017    1.0079400 
    44.0    0.0005316    0.2254193    0.8507194    0.8501879 
    46.0    0.0008714    0.1759270    0.7075042    0.7066328 
    48.0    0.0017305    0.1378011    0.5790063    0.5772758 
    50.0    0.0020692    0.1094539    0.4652917    0.4632225 
 
Table 3. Cross section for Westpac at 7 deg incidence angle with no dihedral angle offset . The maximum 
values for velocity aberration 36, 38, 40, and 42 microradians are the values shown in column 2 of table 2. 
 
Microradians     Cross-section     angle (deg)  Cross Section (sq m) 
     0.0    9.7185625     0.0   655891.8 
     2.0    9.5451555     0.0   644188.8 
     4.0    9.0422200     0.0   610246.4 
     6.0    8.2595189     0.0   557423.1 
     8.0    7.2731369     0.0   490853.6 
    10.0    6.1761959     0.0   416822.6 
    12.0    5.0703650     0.0   342191.7 
    14.0    4.1527559     1.0   280263.5 
    16.0    3.3936579     2.0   229033.1 
    18.0    2.8364401     2.0   191427.3 
    20.0    2.4167251     2.0   163101.3 
    22.0    2.1403943     2.0   144452.1 
    24.0    1.9977891     2.0   134827.9 
    26.0    2.0994745     0.0   141690.5 
    28.0    2.3420730     0.0   158063.1 
    30.0    2.6136478     0.0   176391.3 
    32.0    2.8498785     0.0   192334.2 
    34.0    3.0019057     0.0   202594.3 
    36.0    3.0466102     0.0   205611.3 
    38.0    2.9844830     0.0   201418.5 
    40.0    2.8160866     0.0   190053.6 
    42.0    2.5648466     0.0   173097.8 
    44.0    2.2631820     0.0   152738.9 
    46.0    1.9465926     0.0   131372.7 
    48.0    1.6624684     1.0   112197.6 
    50.0    1.4361345     1.0    96922.7 
 
Table 4. Maximum cross section vs velocity aberration for WESTPAC with a dihedral angle offset of 1.75 
arc seconds. 
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Appendices 
 
 

Appendix A. Description of analysis programs 
 
 The original versions of these programs were written in the early 70’s. The current versions have a number 
of new features that have been added recently. 
 
TRANSFR   This program is described in SAO Special Report 382. It is optimized for computing an N x 
N diffraction pattern of an array. Matrices for cross section, centroid range correction, and pulse spread 
(r.m.s width) are computed. The program has been recently updated to include recessed cube corners such 
as used on WESTPAC. 
 
RETURN   This program is like TRANSFR except that it uses versions of the diffraction subroutines that 
compute only a single point in the far field. The pulse shape is computed to determine the centroid, half-
area, peak, and half-max points. The program can also model coherent interference and photon 
quantization using a random number generator. The program has been recently recreated after not being 
used for 25 years. Some work remains to be done to get the program fully operational. 
 
LRSS     (Laser Receiving System Simulation). This program can use a pulse shape computed by 
RETURN or generate a Gaussian input pulse. The average number of photoelectrons is used to generate 
random signal strengths using a Poisson distribution. Photoelectrons are randomly distributed in the area 
under the pulse. The pulse shape is plotted and analyzed for various detection algorithms - centroid, half-
area, half-max, and pulse analyzer (with a centroid algorithm). The program was recently recreated after 
not being used for 25 years. 
 
DIFRACT  This program computes the diffraction program of a single cube corner at normal incidence by 
numerical integration of a 101 x 101 array of phases. It can model the effect of a temperature gradient 
expressed as a quadratic function in three dimensions with origin at the center of the front face. New 
features have been added to model various types of curvature of the wavefront expressed as a polynomial 
function of the position from the center of the front face. Modification have been added to produce phase 
plots, and simulated interferograms. 
 
ECCENTRIC This program computes signal strength in photoelectrons for a specific set of station 
parameters for a satellite in an eccentric orbit. It is a recently written program based on an old program, 
RNGEQN, which modeled only circular orbits. The cross section of the satellite can be given as a constant, 
a table vs velocity aberration, or a two-dimensional matrix. The program can accept a set of matrices vs 
incidence angle on the array assuming the satellite is gravity gradient stabilized. The cross section matrices 
are computed by program TRANSFR 



Appendix B. Tables for signal strength dependence of the Lageos range correction. 
 

Lageos 
 
 Average  No. of  Cent  RMS  Half  RMS  1/2  RMS  Returns 
    PE    pulses             area       max 
 
     .1    10000   241 21.9   241 21.9  250 22.1    964 
     .2    10000   241 21.3   241 21.3  251 21.6   1816 
     .5    10000   241 20.7   241 20.7  253 21.2   3949 
    1.0    10000   241 19.4   241 19.4  255 20.2   6312 
    2.0     5000   241 16.8   242 16.8  259 17.9   4337 
    5.0     2000   241 11.0   243 11.1  263 12.3   1991 
   10.0     1000   241  7.5   244  7.7  265  8.8    999 
   20.0      500   241  5.2   244  5.0  267  6.3    500 
   50.0      200   241  3.2   244  3.0  267  3.9    200 
  100.0      100   241  2.1   244  1.9  268  2.8    100 
  200.0       50   241  1.5   244  1.3  268  2.2     50 
  500.0       20   241   .9   244   .9  268  1.4     20 
 1000.0       10   241   .8   244   .7  268  1.0     10 
 
 
 Average  No. of      Returns vs. Photoelectrons 
    PE    pulses      1    2    3    4    5    6    7 
 
     .1    10000    906   56    2 
     .2    10000   1623  179   14 
     .5    10000   3021  763  144   20    1 
    1.0    10000   3655 1825  626  163   34    8    1 
    2.0     5000   1377 1373  869  432  188   68   23 
    5.0     2000     69  162  276  355  357  301  199 
   10.0     1000      1    0    7   21   42   60   86 
   20.0      500      0    0    0    0    0    0    0 
   50.0      200      0    0    0    0    0    0    0 
  100.0      100      0    0    0    0    0    0    0 
  200.0       50      0    0    0    0    0    0    0 
  500.0       20      0    0    0    0    0    0    0 
 1000.0       10      0    0    0    0    0    0    0 
 
 
Pulse shape from LAGEOS computed with program RETURN. Laser pulse width .2 ns. Centroid 241 mm. 
Half-area 244 mm. Half-max point on pulse at 266 mm. Half-max range correction 241 + 10 = 251 mm. 
Output pulse sigma (r.m.s. width) 22 mm. 



 
Format of the Lageos tables 

 
First Table 

 
Column Data 
 
Average  The average signal strength in photoelectrons. 
  PE  A specific number of photoelectrons for each pulse is chosen 
  using a Poisson distribution. 
 
No. of  Number of pulses to be generated and averaged. 
pulses 
 
Cent  Average centroid of all the pulses in millimeters 
 
RMS  'sigma' or r.m.s variation of the centroid values (mm) 
 
Half  Average Half area range correction (mm) 
area 
 
RMS  r.m.s variation of the Half Area range corrections (mm) 
 
1/2  Average half-max position on the leading edge of the 
max  pulses 
 
RMS  r.m.s variation of the 1/2 max positions 
 
Returns  Number of pulses having at least one photoelectron 
 

Second Table 
 
Column    Data 
 
Average    Average number of photoelectrons 
  PE 
 
No. of    Number of pulses to generate 
pulses 
 
Returns vs. Photoelectrons       Number of returns having 1,2,3,4,5,6,7 photoelectrons 
 
 
Note: For average signal strengths past 1.0, there are pulses having more than 7 photoelectrons in the 
sample. These are not listed. 



Target Calibration 
  
 Average  No. of  Cent  RMS  Half  RMS  1/2  RMS  Returns 
    PE    pulses             area       max 
 
     .1    10000   241 12.7   241 12.7  250 12.9    964 
     .2    10000   241 12.6   241 12.4  250 12.7   1816 
     .5    10000   241 11.9   241 11.9  251 12.5   3949 
    1.0    10000   241 11.5   241 11.5  252 12.6   6312 
    2.0     5000   241 10.3   241 10.4  254 11.9   4337 
    5.0     2000   241  6.0   241  6.6  256  8.7   1991 
   10.0     1000   241  4.5   241  4.6  257  6.5    999 
   20.0      500   241  3.0   241  3.1  258  4.6    500 
   50.0      200   241  1.9   241  1.9  258  2.9    200 
  100.0      100   241  1.1   241  1.3  258  2.1    100 
  200.0       50   241   .8   241   .9  258  1.6     50 
  500.0       20   241   .6   241   .6  258  1.0     20 
 1000.0       10   241   .5   241   .5  258   .7     10 
 
Pulse shape from target computed with program RETURN. Single cube with range correction 241 mm. 
Laser pulse width .2 ns. Half-area 241 mm. Half-max point on pulse at 256 mm. Half-max range correction 
241 mm. Output pulse sigma (r.m.s width) 12.8 mm. 
  

Input Parameters for program LRSS 
          
Data Description 
          
5 Number of fixed threshholds (.1, .2, .5, 1.0, 2.0 Volts - data not shown in tables) 
.2 Laser pulse width (FWHM) (Not used - use input pulse shape from RETURN) 
.125 Photo-multiplier rise time (ns). Sigma = .125/(2 x 1.28) = .0488 ns. 
.050 Single photoelectron voltage 
.1 Attenuation factor 
30. Amplifier gain 
0. Amplifier rise time (ns) 
9999. Amplifier cutoff (dummy - not used) 
1. Counter gain 
0. Counter rise time (ns) 
.005 Pulse shape plot interval (ns) for numerical analysis 
8. Pulse analyzer channel to center on half-max point of leading edge 
.07 Channel separation (ns) 
.025 Channel width (ns) 
40 Number of channels 
<.3 Amplifier linear region (volts) 
.3-2.7 Amplifier distortion (volts) 
>2.7 Amplifier saturation (volts) 
 
Average amplifier input .25 volts for 100 photoelectrons. Pulses with more than 100 photoelectrons in 
distorted region of amplifier. No distortion model used. 
 
Analyzer uses centroid algorithm. Range corrections (not shown) same as Centroid. 



Analytical calculation of pulse width and rms noise 
 
PHOTOMULTIPLIER 
 
For a .125 ns rise time of the photomultiplier the sigma of a single photoelectron should be .125/(2 x 1.28) 
= .0488 ns. (I do not remember where the factor of 1.28 comes from.) In one-way meters this is .0488 x 
.3/2 = .0732 meters or 7.3 mm. The half-max point on a single photoelectron is 7.32 x 1.1774 = 8.6 mm 
from the center. The factor of 1.1774 is the square root of ln(4). The average position of a single 
photoelectron is the centroid. With the center of a photoelectron at 241 mm, the half-max point should be 
at 241 + 8.6 = 249.6 mm in agreement with the value of 250 mm in the simulations for single 
photoelectrons. 
 
TARGET CALIBRATION 
 
For a .2 ns laser pulse the one way half-max point should be 15 mm from the center. With the center at 241 
mm the half-max point should be at 241 + 15 = 256 mm. Convolving the 15 mm from the laser pulse with 
the 8.6 mm from the photomultiplier gives a half-max point about 17 mm from the center. The convolution 
is SQRT(15**2 + 8.6**2) for two Gaussians. Adding 241 and 17 gives 258 in agreement with the target 
calibration simulation for strong signals. 
 
LAGEOS RETURN PULSE 
 
The half-max point on the LAGEOS return pulse as computed by program RETURN is at 266 mm. After 
going through the photomultiplier it is at about 268 mm. If the laser pulse has zero width, the sigma of the 
return from LAGEOS is about 18 mm (or a half-max point of 18 x 1.1774 = 21 mm). Convolving 21 mm 
for the array with 15 mm for the laser pulse gives a half-max point of SQRT(21**2 + 15**2) = 26 mm 
from the center. Adding 241 and 26 gives 267 in approximate agreement with the half-max point of 266 
mm computed by program RETURN. Since the return pulse is asymmetrical the convolution should be 
done numerically. The square root of the sum of the squares gives only an approximate answer. 
 
RANGE VARIATIONS DUE TO QUANTIZATION 
 
For a .2 ns laser pulse the one way half-max point is 15 mm from the center. The standard deviation 
(sigma) of the pulse is 15/1.1774 = 12.7 mm. This agrees with the single photoelectron RMS scatter in the 
target calibration table. The pulse sigma calculated for LAGEOS by program RETURN for a .2 ns pulse is 
22 mm. This agrees with the RMS scatter for a single photoelectron in the LAGEOS table. The sigma of 
the return from LAGEOS with a zero width pulse is 18 mm. Convolving this with the 12.7 mm sigma for a 
.2 ns pulse gives SQRT(18**2 + 12.7**2) = 22 mm in agreement with the value calculated by program 
RETURN. This formula can be used to calculate the single photoelectron scatter for other laser pulse 
widths. 



 Appendix C. Theory of programs RETURN and LRSS 
 
1.   The intensity of the transmitted laser pulse as a function of position along the beam is assumed to be 
 

 I x( ) = 1
σ 2π

e
−

x 2

2σ 2
 

 
where σ(meters) = pulse width (nsec) × .3/(2 × 1.1774).  
 
2.   The retroreflector array is defined by giving the position and orientation of each reflector with respect 
to the centroid of the satellite in the orbital configuration. 
 
3.   The energy reflected from each cube corner can be computed in either of two ways. In the first it is 
proportional to the active reflecting area of the retroreflector which is a function of the angle of incidence 
of the laser pulse on the front face of the retroreflector. In the second it is given by the cross section of the 
retroreflector at a particular point in the far field diffraction pattern. The second method is more precise. 
 
4.   The coherent return from the satellite array is computed by assigning random phases to the reflection 
from each cube corner. The reflected intensity is 
 
  IR x( ) = A x( )A* x( )
 
where 
 

 A x( ) = Si

σ 2πi=1

N

∑ e
−

x− di( )2

4σ 2
e jθi  

 
with Si  = active reflecting area or cross section of each cube corner 
  = twice the distance of the reflector from the centroid of the satellite along the di
          line of sight 
 θ i  = the random phase angle assigned to each cube corner 
 σ  = the sigma of the transmitted pulse 
 N = the number of retroreflectors 
 j = −1  
 
5.   The average number n I  of photoelectrons per pulse is chosen arbitrarily in the system simulation 
program. Let Ec  be the energy of a coherent pulse and EI  be the energy of the incoherent return. The 
average value of Ec  is EI . The average number n  of photoelectrons generated by a coherent pulse of 
energy 

c

Ec  is 
 

 n c = n I
Ec

EI

 

 
The actual number n  of photoelectrons received will fluctuate about the value n  according to a Poisson 
distribution. Using a random number generator giving numbers uniformly distributed on the interval 0 to 1 
one can pick a value for n  as follows. The normalized probability of a value 

c

k  of the variable n  is 
 

 Pn c k( )= n c
k

k!
e− n c  



 
For a random number R , the corresponding value of n  is the smallest value of n  for which 
 

 Pn c k( )> R
k=0

n

∑  

 
6.   The received pulse shape  is used as a probability function for distributing the n  photoelectrons 
determined in step 5. The pulse shape is integrated and divided by the total energy to give the normalized 
energy 

IR x( )

E  as a function of x . Each element of energy has an equal probability of generating a 
photoelectron. A random number generator giving random numbers uniformly distributed  on the interval 0 
to 1 is used to pick n  points along the energy axis. By inverting the function E x( ) to give  one 
obtains n  values of 

x E( )
x  giving the positions of the photoelectrons. 

 
7.   The output pulse f x( )  of the photomultiplier is constructed as the sum of Gaussian pulses resulting 
from each photoelectron. 
 

 f x( ) = Ae
− x 2

2σ p
2

i=1

n

∑  

 
where  = amplitude of the single photoelectron signal A
 σ p  = sigma of the single photoelectron signal 

       = τ pm 2 ×1.28( ) 
 τ pm  = photomultiplier rise time 
 
8.   The centroid of the pulse is computed as 
 

 Centroid = −∞∞

xf x( )dx
∞

∫

f x( )dx
−∞
∫

 

 
The half area point is the point x  for which 
 

 f x( )dx =
1
2

f x( )dx
−∞

∞

∫
−∞

x

∫  

 
9.   The pulse height analyzer is simulated by integrating the pulse over .8 nanosecond intervals and 
assigning the value  of each interval to the midpoint of the interval F x . The analyzer centroid of the pulse 
is then 
 

 Analyzer = i
20

Fi xi
=1

20

∑

Fi
i=1
∑

 

 



The width of the integration interval (.8 ns above) and the spacing of the points xi  are controlled by input 
parameters as well as the number of channels which is usually 20 or 40. The first channel is to the right 
(+x  direction) and the last is to the left (−x  direction). The positioning of the first channel is determined 
by requiring that the start of the 7th (or other channel specified on input) be at the half-max point on the 
pulse. 
 
   The half maximum detection system is simulated by starting from the +x  end of the pulse and finding 
the first point where  is half of the maximum value of f x( ) f x( ) . Fixed thresholds are done similarly for 
various constant values of the threshold. 
 
 


