Mount Conductance Case 1: Cavity 303 Kelvin, emissivity .05 Rings 303 Kelvin, emissivity .9 1.0 inch uncoated cube Dihedral angle +1.25 arcsec Temperature vs Conductance Cross section vs conductance ## Cross section vs velocity aberration for various conductance From the top Isothermal red Cond. color - .000 green - .005 blue - .010 purple - .020 red - .050 green - .100 blue - .200 purple Case 2: Cavity 303 Kelvin, emissivity .05 Rings 303 Kelvin, emissivity .9 1.5 inch uncoated cube Dihedral angle +1.25 #### Cross section vs conductance ## Cross section vs velocity aberration for various conductance From the top Isothermal red #### Cond. color - .000 green - .005 blue - .010 purple - .020 red - .050 green - .100 blue - .200 purple - .500 red Case 3: Cavity 413 Kelvin, emissivity .07 Rings 413 Kelvin, emissivity .9 1.0 inch uncoated cube Dihedral angle +1.25 arcsec Cube temperature vs conductance Cross section vs conductance #### Cross section vs velocity aberration for various conductance ## From the top Isothermal red # Cond. color - .000 green - .005 blue - .010 purple - .020 red - .050 green - .100 blue - .200 purple - .500 red Case 4: Cavity 413 Kelvin, emissivity .07 Rings emissivity .9 1.0 inch uncoated cube Dihedral angle +1.25 arcsec Antonio calculations Italy Very high conductance Cube Temperature 390 deg Kelvin Cross section vs velocity aberration Isothermal red Thermal green Case 5: Cavity 303 Kelvin, emissivity .05 No rings 1.0 inch uncoated cube Dihedral angle +1.25 arcsec Isothermal red With cavity emissivity .05 Green Plot of temperature vs the square of the distance from the center of the front face. The coordinates of the vertex are (1,1,1) in matrix units. The center of the front face is at (5,5,5). The length of the symmetry axis is $4\sqrt{3} = 6.928$. The square of the length is $16 \times 3 = 48$. The black line is the best fit to the residuals. The rms deviation = 0.08991. Case 6: Time constants 1.0 inch uncoated cube Dihedral angle +1.25 arcsec Cavity 303 Kelvin, emissivity .05 Red - No rings, Case 5 Rings, 303 Kelvin, emissivity .9 Green - Case 1, conductance .000 watts/deg Blue - Case 1, conductance .200 watts/deg No rings red Rings, conductance .000 Green Rings, conductance .200 Blue Red. With no retaining rings the only heat input is from the cavity with an emissivity of .05. The time constant for the change in temperature of the cube is very long. There is very little effect on the cross section as seen in case 5 Green. With the retaining rings the heat input is significantly larger. The time constant is shorter. The temperature of the cube is significantly higher. Blue. With the retaining rings and a conductance of .200 watts/deg the rise time is very fast comparatively. The final temperature is close to that of the retaining rings. rms variation of the temperature = 0.57774 Case 7: 1.5 inch coated cube No dihedral angle offset Isothermal & Quadratic temperature distribution Red = isothermal pattern Green = numerical calculation with the quadratic distribution below. Temperature proportional to the square of the distance from the center of the front face. The pattern computed with the temperature distribution above give the same pattern as with an isothermal pattern. If the ray tracing is done analytically the pattern is the same as the isothermal pattern. If the ray tracing is done numerically using the points plotted above the is numerical error that reduces the cross section at the center of the pattern and increases the cross section at around 20 microradians. However, the pattern is still close to the perfect pattern even though there are temperature differences of over 4 degrees.